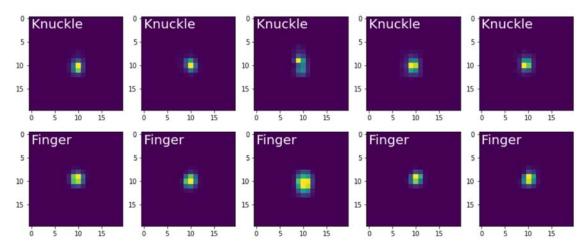

Practical Machine Learning

Feature Engineering & Representation Learning

Feature Engineering

- Feature Engineering is often used for non NN ML e.g. SVM
- Requires domain knowledge and "thinking" before training



Feature Engineering

- Sum of pixels
- Min/Max value
- Ellipse fitting
 - Radius 1 & 2
 - Theta

- ...
- ... And others we can think of depending on our problem

Representation Learning

- The data gets presented into the model without additional preprocessing
- No domain knowledge
- No thinking
- The hope is that the model is doing the "thinking" for you

Pros and Cons

- Feature Engineering
 - Reduced the input data
 - → models can be smaller
 - → more suitable for "traditional" ML models
- Representation Learning
 - Raw data as input
 - → the models needs to do more "work"
 - → the model has to be larger
 - → Harder to train
 - → more suitable for NN models

Conclusion

Feature Engineering & Representation Learning

- Feature Engineering
- Representation Learning

License

This file is licensed under the Creative Commons

Attribution-Share Alike 4.0 (CC BY-SA) license:

https://creativecommons.org/licenses/by-sa/4.0

Attribution: Sven Mayer

