

Practical Machine Learning

Optimizer and Hyperparameter

Sven Mayer

Impact of Hyperparameter on the Models

MNIST data as showcase

Test Model

Optimizer

Optimizer

The optimizer is an algorithm that decided on how to adjust the weights and biases during backpropagation. This is done by minimizing the cost described by the loss function.

Optimizer

- Adadelta (2012 <u>https://arxiv.org/abs/1212.5701</u>)
- Adagrad (2011 <u>https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf</u>)
- Adam (v1: 2014 v9: 2017 <u>https://arxiv.org/abs/1412.6980</u>)
- Adamax (version of Adam https://arxiv.org/abs/1412.6980)
- FTRL (2013 <u>https://research.google.com/pubs/archive/41159.pdf</u>)
- Nadam (2015 <u>http://cs229.stanford.edu/proj2015/054_report.pdf</u>)
- Root Mean Square Propagation (RMSprop) (2012 <u>http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf</u>)
- Stochastic gradient descent (SGD)

Optimizer Test

With default settings

2 dense layers with dropput tested on a subset of the MNIST dataset

Learning Rate

The learning rate is the rate on how much the optimizer adjusts the weights and biases in each backpropagation step.

Learning Rate Test

Effect of the Initial Learning Rate Using Adam

2 dense layers with dropput tested on a subset of the MNIST dataset

Adaptive Learning Rate

- Learning rate decay over time
- Learning rate decay on no change (plateau)
- Use of "momentum" to accelerate training

A loss function (cost function) is a function to determine how different the prediction is with respect to the ground truth. The optimizer's goal is to minimize the loss.

- Discrete Data
 - Binary Cross Entropy
 - Categorical Cross Entropy
 - Hinge loss
- Continues Data
 - Mean Absolute Error (MAE) (also know as L1 Loss)
 - Mean Squared Error (MSE) (also know as L2 Loss)
 - Mean Squared Logarithmic Error

Classificaion

Sven Mayer

Regression

Sven Mayer

Advanced Loss

- Pixel-wise loss
- Feature matching (FM), e.g. [1]

$$loss = \lambda_1 * MSE + \lambda_2 * FM$$

In the image domain, such approaches are used to counteract blurry images.

[1] Florian Schroff, Dmitry Kalenichenko, James Philbin; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 815-823

Conclusion

Layers

- Optimizer
- Learning Rate
- Adaptive Learning Rate
- Loss Function

License

This file is licensed under the Creative Commons

Attribution-Share Alike 4.0 (CC BY-SA) license:

https://creativecommons.org/licenses/by-sa/4.0

Attribution: Sven Mayer

