
InfiniTouch: Finger-Aware Interaction on
Fully Touch Sensitive Smartphones

Huy Viet Le1, Sven Mayer1, Niels Henze1,2

1University of Stuttgart, Germany, 2University of Regensburg, Germany
1{huy.le, sven.mayer}@vis.uni-stuttgart.de, 2niels.henze@ur.de

ABSTRACT
Smartphones are the most successful mobile devices and offer
intuitive interaction through touchscreens. Current devices
treat all fingers equally and only sense touch contacts on the
front of the device. In this paper, we present InfiniTouch,
the first system that enables touch input on the whole device
surface and identifies the fingers touching the device without
external sensors while keeping the form factor of a standard
smartphone. We first developed a prototype with capacitive
sensors on the front, the back and on three sides. We then
conducted a study to train a convolutional neural network that
identifies fingers with an accuracy of 95.78% while estimating
their position with a mean absolute error of 0.74cm. We
demonstrate the usefulness of multiple use cases made possible
with InfiniTouch, including finger-aware gestures and finger
flexion state as an action modifier.

ACM Classification Keywords
H.5.2 User Interfaces: Input devices and strategies

Author Keywords
Touchscreen; machine learning; finger-aware interaction.

INTRODUCTION
Over two billion people use smartphones for applications that
were previously exclusive to computers, including email wri-
ting, browsing the internet, and editing pictures [64]. In con-
trast to computers, smartphones can be used while on the
move and in a wide range of situations in which only one
hand is available for interaction. From a technical point of
view, touchscreens translate the contact areas of touches into
two-dimensional positions for an intuitive interaction through
direct touch. However, this limits the input vocabulary as
smartphones are commonly used one-handedly [5, 40] with
only the thumb touching the display. This slows down inte-
raction compared to input devices for computers and generally
leads to reachability issues.

Input devices such as mouse and keyboard are designed to be
used with multiple fingers and offer more input dimensions
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST ’18, October 14–17, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5948-1/18/10. . . $15.00

DOI: https://doi.org/10.1145/3242587.3242605

Figure 1. Our full-touch smartphone prototype based on two LG Nexus
5 and a Genuino MKR1000 for touch sensing on the edges.

than touchscreens by enabling multiplex input. For example, a
mouse offers at least two buttons that enable index and middle
fingers to activate different functions at the same cursor posi-
tion while a hardware keyboard offers modifier keys to perform
shortcuts. Thus, smartphone manufacturers incorporated input
controls beyond the touchscreen that can be controlled by fin-
gers which previously only held the device (e.g., fingerprint
scanners). Similarly, previous work thoroughly investigated
Back-of-Device (BoD) interaction and presented smartphone
prototypes with touch input capability on the back [17, 42], the
edges [34], and on the whole device surface [44, 53]. These
devices enable multiple fingers to perform explicit (e.g., gestu-
res [42, 63]) or implicit input (e.g., grip recognition [44]).

Common approaches for BoD interaction simply add a second
touchscreen [15, 17, 76], so that contact areas are still transla-
ted into two-dimensional positions while inputs of all fingers
are treated equally. Thus, it is not possible to use different fin-
gers for different functions. Moreover, the full finger and hand
surface can get in contact with the back side (c.f., Figure 3a)
so that translating individual contact areas to two-dimensional
positions is not feasible anymore. Previous work limited the
size of the touch panel [6, 17, 42], or used patterns of the grip
contact areas to activate different actions [11, 12, 13]. In ad-
dition, they used external hardware (e.g., wearable sensors or
cameras) which reduces the mobility but enables identification
of the touching finger. However, there is no previous work
that interprets all contact areas on the device surface to enable
different fingers to activate different functions. The concept
of treating different fingers individually for touch interaction
has been called finger-aware interaction. Each finger could
be responsible for a specific function similar to how computer

https://doi.org/10.1145/3242587.3242605

mouses are used. This enables a wide range of applications
including shortcuts, mode switches, finger-specific functions,
reachability improvements, and one-handed pinch gestures.

In this paper, we develop InfiniTouch, a system that enables
finger-aware interaction on a smartphone’s whole device sur-
face. In contrast to previous work, our prototype has the form
factor of a standard smartphone and does not require external
hardware. We use the contact areas on the whole device sur-
face to train a convolutional neural network (CNN) for finger
identification. The model achieved an accuracy of 95.78% for
identifying fingers on the device surface while estimating their
3D position with a mean absolute error (MAE) of 0.74cm. In
contrast to grip recognition [44], our model enables fingers to
perform implicit as well as explicit input. We implemented
multiple use cases to showcase the performance of our model
and the usefulness of finger-aware interaction on the whole
device surface of smartphones during one-handed interaction.

BACKGROUND AND RELATED WORK
We develop finger-aware interaction on smartphones with
touch sensing on the whole device surface. Thus, we review
previous approaches that enable finger-aware interaction on
touch surfaces. Afterwards, we review previous approaches
that enable touch interaction beyond the touchscreen.

Finger-Aware Touch Interaction
Three common approaches were presented in previous work
to enable finger-aware interaction on touch surfaces: (1) using
wearable sensors attached to the user, (2) using cameras to
capture the hand, and (3) interpreting the shape geometry of
touches. In general, attaching wearable sensors to the user,
including vibration sensors [49], infrared sensors [29, 30], glo-
ves [48], and electromyography [7], yields the highest accura-
cies. However, these approaches reduce mobility since additi-
onal sensors are required. Instead of instrumenting the hand,
RGB cameras (e.g., webcams) and computer vision techni-
ques were used to identify fingers touching a surface [71, 83].
Moreover, depth and infrared cameras such as the Microsoft
Kinect and the Leap Motion enable touch sensing [56, 73] and
are commonly used to prototype finger-aware interaction [14].
However, the cameras need to be attached or close to the
smartphone which affects form factor and mobility. Tabletops
(e.g., Microsoft PixelSense) use infrared cameras integrated
into the display to provide high-resolution touch images that
enable a wide range of applications [3, 9, 19, 22, 50]. Unfortu-
nately, such data is not available on commodity smartphones.

Therefore, another branch of research used the raw data of
touchscreens to infer the source of touch. These are low-
resolution fingerprints that can be retrieved from mutual ca-
pacitive touchscreens and are referred to as capacitive ima-
ges [28, 36, 43, 51]. Capacitive images are mainly used by
the touch controller to determine a precise touch position and
are typically not exposed to the application layer. Previous
work used this data for a wide range of applications, including
biometric authentication [28, 36], detecting palm touches [43],
and estimating the finger orientation [51, 55, 78]. Gil et al. [23]
used capacitive images to differentiate between touches from
thumb, index, and middle finger on smartwatches. However,

when not performed in exaggerated poses, the accuracy is
around 70% which is not reliable enough for interaction.

While the use of capacitive images does not require external
hardware, their accuracy is not sufficient for interaction. In
contrast to cameras or sensors attached to the user’s hand,
touchscreens can only sense individual fingertips without any
information about the remaining hand. This makes it chal-
lenging to identify which fingers touched the display. To the
best of our knowledge, there is no previous work that uses a
standalone smartphone without wearable sensors or cameras
to enable finger-aware interaction with a suitable accuracy.

Touch Sensing beyond the Front Touchscreen
The simplest and most common approach for BoD interaction
is to attach two smartphones back-to-back [15, 17, 62, 75,
76]. However, this approach increases the device thickness
which negatively affects the hand grip and interaction [42, 65].
This is detrimental for studies that observe the hand behavior
during BoD interaction, and could lead to muscle strain. To
avoid altering the device’s form factor, researchers built cus-
tom devices that resemble smartphones [6, 11, 66]. However,
these approaches mostly lack the support of an established
operating system so that integrating novel interactions into
common applications becomes tough. As a middle ground,
researchers use small additional sensors that barely change
the device’s form factor. These include 3D-printed back cover
replacements to attach a resistive touch panel [42], and custom
flexible PCBs with 24 [53, 54] and 64 [11] square electrodes.
However, neither the panel size nor the resolution is sufficient
to enable precise finger-aware interactions such as gestures
and absolute input on par with state-of-the-art touchscreens.

Beyond capacitive sensing, researchers proposed the use of
inaudible sound signals [57, 61, 72], high-frequency AC sig-
nals [82], electric field tomography [81], conductive ink sen-
sors [26], the smartphone’s camera [77, 79], and other built-in
sensors such as IMUs and microphones [27, 60, 80]. While
these approaches do not increase device thickness substantially,
their raw data lack details to enable finger-aware interaction.

While using flexible PCBs as presented in previous work is
a promising approach, the resolution is not sufficient. Furt-
her, previous work used proprietary technologies so that other
researchers cannot reproduce the prototype to investigate in-
teractions on such devices. There is no previous work that
presents a reproducible (i.e., uses commodity hardware) full-
touch smartphone prototype.

Summary
Related work predominantly used external hardware (e.g., we-
arable sensors and cameras) to enable finger-aware interaction
on touch surfaces. Since these approaches limit mobility, rese-
archers investigated the use of the shape geometry of touches
which can be retrieved from capacitive touchscreens. Howe-
ver, the achieved accuracy is insufficient for interaction as
touchscreens can only register a limited part (i.e., individual
fingers) of the hand. Without information about the remaining
hand and its degrees of freedom, it is challenging to infer
which finger touched the device. Thus, we propose to use
capacitive images representing touches on the whole device

surface to train a finger identification model. We develop a
full-touch smartphone that provides these capacitive images
and train a state-of-the-art machine learning model to identify
touches. We show that fingers can be identified with an accu-
racy of 95.78% while the finger positions can be estimated
with an MAE of 0.74cm during one-handed interaction.

FULL-TOUCH SMARTPHONE PROTOTYPE
We developed a full-touch smartphone prototype that provi-
des capacitive images for a finger identification model. We
adapted an approach presented in previous work [44] and used
two LG Nexus 5 as basis which provides capacitive images
with a resolution of 27×15 px on the front and back side. As
using the full hardware of both smartphones (i.e., stacking the
devices) lead to a noticeable increase in thickness, we separa-
ted the prototype into two modules to gain flexibility in form
factor: a Handheld Device, and a Hardware Container. Each
module is comprised of a self-designed printed circuit board
(PCB) that act as extension adapters to connect the Handheld
Device (PCBHD) and Hardware Container (PCBHC) with each
other via flexible flat cables (FFC). Instead of manufacturing
proprietary sensors, we based our prototype on two commo-
dity smartphones and release the schemes of our self-designed
PCB so that the community can re-implement our prototype.
This enables further exploration of interaction techniques ba-
sed on finger-aware interaction on the whole device surface.
The PCB schemes, 3D models, component descriptions, and
source code to reproduce our prototype are available on our
project page1 under the MIT license.

Handheld Device
The Handheld Device (see Figures 1 and 2a) consists of a 3D
printed frame, two Nexus 5 touchscreens, 37 copper plates as
capacitive touch sensors on the edges, and a PCBHD. The 3D
printed frame holds both touchscreens and encloses PCBHD.
The capacitive touch sensors are fixated on the left, right and
bottom side of the frame. Each touch sensor is a 6×y×0.5mm
(with y = 6mm for left and right, and y = 12mm for the bottom
side) copper plate which is glued into engravings of the frame
with a gap of 1.0mm in between and sanded down for a smooth
feeling. The copper plates are connected to the PCBHD which
in turn comprises three MPR121 capacitive touch controllers
operated by a Genuino MKR 1000 microcontroller in the Har-
dware Container. Similarly, both touchscreens are connected
via a board-to-board connector on the PCBHD and are operated
by the remaining components of the Nexus 5 located in the
Hardware Container. The two FFCs are routed through the
top side of the Handheld Device as there is a low likelihood
that it disturbs the user when holding the phone in a usual
grip [45, 46]. The dimensions of the Handheld Device are
137.6×68.7×8.9mm (115g). In comparison, the dimensions
of an off-the-shelf Nexus 5 are 137.8×69.1×8.6mm (130g).

Hardware Container
The Hardware Container (see Figure 2b) is a 3D printed box
that contains two Nexus 5 circuit boards and batteries, a Gen-
uino MKR 1000 microcontroller, three micro USB breakout
boards, and two tactile buttons. The circuit board of the Nexus
1https://github.com/interactionlab/InfiniTouch

(a) Handheld Device (b) Hardware Container
Figure 2. Full-touch smartphone prototype: (a) the Handheld Device,
and (b) Hardware Container containing the processing units. Both com-
ponents are connected via our self-designed PCB and flexible flat cables.

5 is connected to a compatible board-to-board connector on
PCBHC which in turn is connected to the touchscreens. To
access the power buttons and USB ports of the two Nexus 5,
we replaced them with tactile buttons and USB micro brea-
kouts integrated in the Hardware Container. Moreover, we
extended the Genuino’s USB port to a USB micro breakout
board. The Genuino MKR 1000 is connected to the PCBHC to
operate the side sensors connected to the PCBHD, and can be
powered by battery via the JST connector or through USB.

Capacitive Images and Interconnection
We accessed the 27×15 px capacitive images of the front and
back touchscreen by modifying the Android kernel. Each pixel
corresponds to a 4.1×4.1mm square on the 4.95′′ touchscreen.
The pixel values represent the differences in electrical capa-
citance (in pF) between the baseline measurement and the
current measurement. We used I2C calls to access the regis-
ter for test reporting as described in the RMI4 specification
(511-000405-01 Rev.D) and the driver’s source code2. We pul-
led the capacitive images from the debugging interface with
20 fps and stored them in the proc filesystem (procfs) to make
them accessible in the application layer. As the edge sensors
are square electrodes, we simply read their values with the
MPR121 library to retrieve a capacitive image.

To generate a merged capacitive image of the sensor values on
all sides, the Nexus 5 responsible for the front opens a WiFi
hotspot to receive the values from the Nexus 5 on the back and
the Genuino MKR 1000. The transfer latency measured by
an average round trip time over 1000 samples is 7.2ms (SD
= 2.6ms). As the capacitive images can be pulled from the
debugging interface with 20 fps at most, the transfer latency
can be neglected. Data from side sensors can be retrieved
at 130 fps. We developed an Android library that retrieves
the capacitive images, establishes a connection between front,
back and side, and provides a callback function in which
developers can retrieve the merged capacitive images.

GROUND TRUTH DATA COLLECTION
Using our prototype, we conducted a study to collect a dataset
comprising the capacitive images and respective 3D motion
2github.com/CyanogenMod/android_kernel_lge_hammerhead/blo
b/cm-12.1/drivers/input/touchscreen/touch_synaptics_ds5.c

https://github.com/interactionlab/InfiniTouch
http://github.com/CyanogenMod/android_kernel_lge_hammerhead/blob/cm-12.1/drivers/input/touchscreen/touch_synaptics_ds5.c
http://github.com/CyanogenMod/android_kernel_lge_hammerhead/blob/cm-12.1/drivers/input/touchscreen/touch_synaptics_ds5.c

(a) Grip 1 (b) Grip 2 (c) Grip 3 (d) Grip 4 (e) Grip 5
Figure 3. Five HAND GRIPs used in the study and adopted from previous work [47].

data of each joint of the hand. The former will be the input
for our model and the fingertips of the latter the output. Parti-
cipants performed finger movements starting from five hand
grips as shown in Figure 3 to cover possible finger positions.

Apparatus
To record finger motions with sub-millimeter accuracy, we
used an OptiTrack motion capture system with eight came-
ras (OptiTrack capturing at 240 fps). The cameras were firmly
mounted to an aluminum profile grid as shown in Figure 4a. To
enable these infrared cameras to record the finger movements,
we attached 25 reflective markers (6.4mm spherical markers
with skin adhesive M3 base) on all joints of the hand similar
to previous work [20, 45] and as shown in Figure 4b. Ad-
ditionally, we attached four markers on the top part of the
full-touch smartphone which enables us to track the device in
six degrees of freedom. We installed a display in front of the
participant to show instructions (see Figure 4a).

Design
The study has three independent variables, HAND GRIP, FIN-
GER and TASK. For HAND GRIP we used known hand grips
that were shown in previous work [47] and in Figure 3. For
FINGER, we used all five fingers of the right hand. As tasks,
we used free movements, in which participants freely moved a
specified finger; swipe gestures, in which participants perfor-
med swipe gestures into left, right, bottom and up directions;

(a) (b)
Figure 4. Study setup: (a) motion capture system with 8 cameras moun-
ted on a aluminum profiles and (b) reflective markers (6.4mm spheres)
attached to the hand of a participant.

and free placements with thumb in which participants placed
the specified finger followed by a thumb movement to simulate
using fingers on the rear as modifiers.

The three independent variables result in a 5×5×3 within-
subject design. We counterbalanced the GRIP using a balanced
Latin square and used a random order for FINGER and TASK.
The duration of each task was 30 seconds which results in a
total duration of 30sec× 5× 5× 3 = 37.5 minutes. During
these tasks, participants were surrounded by eight motion
capture cameras and were seated on a chair without armrests
as shown in Figure 4a. Including the briefing, optional breaks,
and attaching markers, the study took around 60 minutes.

Procedure
After we obtained informed consent, we collected demo-
graphic data using a questionnaire and measured the parti-
cipants’ hand size and finger lengths. We then proceeded to
attach 25 skin adhesive markers on their right hand to enable
motion tracking. Instruction slides were shown on the display
which explains the procedure of the study as well as the finger
movements and hand grips that participants should perform.
We further showed them a demo of the required movements
and asked them to perform it on trial to ensure that everything
was fully understood.

After handing the full-touch smartphone to the participants,
they first imitated a grip shown on the instruction display
and were then instructed to perform the shown task. While
the displayed finger specifies the main finger to move, we
allowed the participants to also move other fingers if this
was necessary to move the main finger. This is necessary to
record hand grip states that are as realistic as possible (e.g.,
the ring finger can only be moved individually to a lesser
extent [31]). The described process was repeated for all HAND
GRIPS, FINGERS, and TASKS. The experimenter monitored
the markers throughout the study to ensure that the finger was
moved at an adequate speed and that all markers are visible in
the motion capturing.

Participants
We recruited 20 participants (7 female) between the ages of
20 and 29 (M = 24.1, SD = 2.5). All participants were right-
handed. The average hand size was measured from the wrist
crease to the middle fingertip and ranged from 15.6cm to
25.0cm (M = 19.3cm, SD = 2.0cm). Our collected data com-
prise samples from the 5th and 95th percentile of the anthropo-
metric data reported in prior work [58]. Thus, the sample can
be considered as representative. Participants were reimbursed
with 10 EUR for their participation.

FINGER IDENTIFICATION MODEL
We train a model to estimate the fingertip locations using the
capacitive images as input. The model output contains an
estimated 3D location for each finger which can also be used
to identify the source of the contact areas (referred to as blobs).

Data Set & Preprocessing
We synchronized the motion data with the capacitive images
of the front, back, and edges of the full-touch smartphone. We
used the capacitive images as input and the 3D motion data of
the fingertips as ground truth for our machine learning model.
We performed the following four data preprocessing steps:

1. Labeling and cleaning motion data: We labeled all markers
in the captured 3D motion data using semi-automatic labe-
ling provided by OptiTrack’s Motive:Body software. We
did not use any reconstruction and smoothing approaches
to avoid generating artificial marker positions.

2. Transforming global to local coordinate system: We trans-
formed each hand marker from the global coordinate system
into the phone’s coordinate system and projected them onto
the device surfaces. We validated the transformation by
sampling five random frames per participant which we ma-
nually checked for correctness.

3. Removing incomplete and erroneous data: To ensure a
complete and valid data set for model training, we keep
only frames in which the rigid body and finger tips are fully
available. Further, we applied a heuristic to detect erroneous
rigid body tracking by assuming that the phone was not
held in uncommon poses (e.g., up-side-down, flipped). This
heuristic removed 0.21% of all frames.

4. Synchronizing motion data and capacitive images: We mer-
ged the capacitive images with the transformed motion data
using timestamps as the merge criteria. As touchscreen la-
tency is unavoidable and higher than the latency of a motion
capture systems [10], the finger’s ground truth position is
ahead of the touch, especially during fast movements. To
counteract the latency, we used a sliding window of 240
frames for each capacitive image to find a motion capture
frame in which the currently moving finger is within the
generated blob (preferably in the center). We validated the
merging process by checking whether the motion data corre-
sponds to the blobs in the capacitive images. This was done
by determining the blob’s contour and checking whether
the 2D position of the fingertip lies within the contour.

In total, our dataset consists of 9,435,903 valid samples stored
in a 67.3GB HDF5 file3 to enable training on a large dataset.

Estimating the Fingertip Positions using CNNs
To develop the model, we used a participant-wise split of
70%:20%:10% for the training, test, and validation set. I.e.,
the model is trained on data from 14 participants, tested on
4 participants, and validated on the remaining 2 participants.
We implemented CNNs using Keras 2.1.3 based on the Ten-
sorFlow backend. We performed a grid search as proposed
by Hsu et al. [37] to determine the most suitable network
3support.hdfgroup.org/HDF5/whatishdf5.html

32

28

64

28

32 32

28

64

3

3

16

14

128

3

3

16

14

128

3

3

256

128

densedense

Max
pooling
Stride of 2

Max
pooling

15

1

3

3

Figure 5. An illustration of the architecture of our CNN for finger posi-
tion estimation. The network input is 896-dimensional, and the number
of neurons in the network’s remaining layers is given by 57,334–57,334–
28,672–28,672–256–128–15.

architecture and hyperparameters. If we do not report a hy-
perparameter in the following, we applied the standard value
(e.g., optimizer settings) as reported in Keras’ documentation.

Our final CNN architecture is shown in Figure 5. The input
consists of capacitive images with 28×32 pixels normalized
to a range between 0 and 1. The output consists of 15 values
((x,y,z) for five fingers) that represent the estimated 3D finger
positions relative to the upper left corner of the display in mm.
Thereby, a finger farther away from the device (e.g. lifted
finger) has a higher distance in the z-axis as captured in the
data collection study. We trained the CNN using an RMSprop
optimizer [67] (similar to the AdaGrad [18] optimizer but with
a less radical learning rate decay) with a batch size of 500.
We experimented with different learning rates and found that
an initial learning rate of .0001 leads to the best performance.
We used batch normalization [38] and a 0.5 dropout after
each pooling and dense layer to prevent overfitting. While we
experimented with L2 Regularization, it did not improve the
overall performance in our experiments. We initialized the
network weights using the Xavier initialization scheme [25].

After experimenting with traditional loss functions for regres-
sion such as root-mean-squared error (RMSE), we developed a
custom loss function to train our CNN. As fingers above or be-
low the device cannot be physically tracked by the touchscreen
(e.g., thumb resting above the display), errors induced by mo-
vements perpendicular to the touchscreen would affect the
RMSE loss function as substantial as an error in horizontal (x)
or vertical (y) direction. However, when omitting the z axis,
the CNN would lose a feature to differentiate whether fingers
are touching the device. Since a less accurate estimation of the
z-axis can be easily compensated by checking the blob availa-
bility at the time using the model, we lowered the influence
of the z-axis error by using an RMSE for the x and y axis, and
a root mean squared logarithmic error (RMSLE) [39] for the
z-axis as follows:

loss =

√
∑

n
i (pxyi − p̂xyi)

2

n
+

√
∑

n
i loge((pzi − p̂zi)+1)2

n
(1)

with n = 5 representing the five finger tips, p for the ground
truth point, and p̂ for the estimated point.

http://support.hdfgroup.org/HDF5/whatishdf5.html

Identifying Touches from Individual Fingers
To identify the finger touching the device (i.e., the responsible
finger for a specific contact area), we used a nearest neighbor
approach to map the estimated positions to the blobs in the
capacitive images. This approach has two benefits over using
the estimated positions directly from the CNN. Firstly, the
jitter caused by noise and the nature of machine learning can
be prevented since the contact areas on the capacitive images
are more stable. As recent touch controllers have shown, a
blob can be converted to a precise touch position without any
jitter. Secondly, the processor workload can be reduced since
model inference is only necessary when fingers are initially
touching (i.e., down event) and releasing (i.e., up event) the
device. In other cases (i.e., finger moving), fingers can be
tracked using the blob position on the capacitive images.

On a technical basis, we performed a contour detection on a
5× up-scaled capacitive image to determine the blobs. We
then used the contour points stored in a k-d tree [21] to find the
closest blob for an estimated finger position in O(logn) time.
We used OpenCV for the contour detection and the Lanczos4
algorithm [69] to scale up the capacitive image. We used the
k-d tree implementation from scipy for the validation and a
reimplementation thereof in our Android demo applications.

Validation
While we used the training and test set to experiment with
hyperparameters, we used the validation set to evaluate our
best model. Our CNN achieved an MAE of 0.74cm. Ta-
ble 1 shows the errors for each finger and axis. The MAE for
the axes are 0.85cm, 0.85cm, and 0.53cm for the x, y, and z
axis respectively while the RMSEs are 1.41cm, 1.39cm, and
0.87cm. The average Euclidean distance for all fingers when
considering the error in 2D space (on screen) is 1.33cm whe-
reas the average error in 3D space is 1.52cm. Since the RMSE

Figure 6. This image shows exemplary capacitive data retrieved from
our prototype when held with Grip 1 as shown in Figure 3a. The colored
contours represents the results of our finger identification model after
mapping the estimations to the blob. The X’s represents placeholder
values that are required to build a 32×28 input matrix for the model.

Thumb Index Middle Ring Little Average

MAE (x) 1.04 1.03 0.98 0.63 0.56 0.85
MAE (y) 0.73 0.52 0.96 0.99 1.06 0.85
MAE (z) 0.50 0.28 0.46 0.50 0.89 0.53
RMSE (x) 1.80 1.75 1.63 1.06 0.79 1.41
RMSE (y) 0.98 0.87 1.43 1.74 1.93 1.39
RMSE (z) 0.73 0.86 0.79 0.72 1.26 0.87
Eucl. dist. (x, y) 1.40 1.25 1.45 1.25 1.30 1.33
Eucl. dist. (x, y, z) 1.55 1.32 1.57 1.42 1.76 1.52

Table 1. The mean absolute error (MAE), root-mean-squared error
(RMSE) and Euclidean distances for each axis in cm.

involves a larger penalty for larger errors (e.g., outliers), an
RMSE > MAE indicates that errors can occur especially for
uncommon finger placements. As expected, the z axis has the
lowest error since the usable movement range perpendicular
to the displays is the smallest of all axes.

These errors can be compensated for with the finger identifica-
tion approach as described above. The accuracy of our model
with this approach can be evaluated as a multi-label classifi-
cation problem; multi-label since multiple fingers could be
matched to one blob due to the low resolution of the capacitive
image. We used both the ground truth fingertip positions and
the estimated fingertip positions and matched them with their
closest blobs. Based on the matchings, we used the Hamming
score [68] which describes the accuracy of a multi-label clas-
sification on a scale between 0 (worst) to 1 (best). Our model
achieved an average Hamming score of 0.9578.

MOBILE IMPLEMENTATION & SAMPLE APPLICATIONS
We combine the full-touch smartphone, CNN, and nearest
neighbor approach to implement InfiniTouch. We present our
implementation and a set of sample applications.

Mobile Implementation
We used TensorFlow Mobile4 for Android on the processing
unit responsible for the front display to run the CNN that es-
timates the fingertip positions. Capacitive images from the
back side and the edges are sent to the front device that merges
the data into an input matrix. The input consists of a 32×28
8-bit image representing the front, back, and edges as shown
in Figure 6. A model inference for one capacitive image takes
24.7ms on average (min = 17ms, max = 29ms, SD = 2.8ms)
over 1000 runs on our prototype. As this is faster than the
sampling rate for the touchscreens’ capacitive images, the in-
ference can be performed on each sample in the background.
With processor manufacturers recently optimizing their pro-
cessors for machine learning (e.g., Snapdragon 845), model
inference can be sped up significantly.5 The model can be
further optimized for mobile devices with techniques such as
quantization [33] and pruning [2] for a small loss of accuracy.

For the finger identification, the contour detection, including a
scale up, takes M = 2.85ms (SD = 0.77ms, min = 1ms, max =
4ms) while finding the closest blob takes M = 0.48ms (SD =
0.12ms, min = 0.19ms, max = 0.96ms) over 1000 runs on our
prototype. Tracking the blobs take M = 0.08ms (SD = 0.04ms,
min = 0.001ms, max = 0.82ms). During these benchmarks,
4www.tensorflow.org/mobile/
5www.qualcomm.com/snapdragon/artificial-intelligence

http://www.tensorflow.org/mobile/
http://www.qualcomm.com/snapdragon/artificial-intelligence

the device was held one-handedly with all five fingers touching
the device (c.f. Figure 3a).

Using Finger Identification in the Application Layer
We extended our Android library described above to provide
the finger position estimations from the model and the re-
spective position of the blob (i.e., position of the upper-left
contour point, and size) for each finger in a callback function.
This enables developers to access the finger positions similar to
Android’s OnTouchListener interface. Besides the position
(in an on-device coordinate system with the upper left corner
of the front display being (0,0,0)), we also provide the event
(i.e., down, up, and move). With this, the blob’s position and
estimation can directly be fed into Android’s MotionEvent
which enables to use Android’s own GestureDetector, or
third-party gesture recognizers such as $P [70], $1 [74], $N [1],
and the gesture recognition toolkit [24].

Sample Use Cases
Based on the mobile implementation of our model, we im-
plemented two use cases for finger-aware interaction on the
full-touch smartphone. We describe our implementation in the
following and showcase them in the accompanying video.

Finger-Specific Touch Gestures
Implementations of BoD interaction in previous work [42, 59,
63] treated inputs of all fingers equally. Thus, performing a ge-
sture with the index finger would result in the same function as
a gesture performed with the middle finger. With InfiniTouch,
the same gesture can activate different functions depending
on which finger performed the input. This extends the input
space similar to a computer mouse where the index finger is
used for main actions, while the middle finger is used for the
right mouse button to activate secondary actions.

In our sample use case, we mapped a swipe down performed
by the index finger to copying selected items into the clipboard
(inspired by the come to me gesture) while a swipe down by
the middle finger pastes from the clipboard. A swipe down
performed by both index and middle finger simultaneously
selects all items as shown in Figure 7a. While we demonstrated
this concept within a file manager, it can also be used in text
editing applications, galleries, and further applications that
support the clipboard.

BoD Finger Flexion State as Action Modifier
While hardware keyboards provide modifier keys to modify
the action of another key, touchscreens implement this concept
only via dwell times or applied force which requires additi-
onal execution time. We propose to use the position of the
fingertips (i.e., their flexion state) on the back to modify the
actions performed on the front screen. For example, bending
a specific finger can be done comfortably [45] and could be
used similarly to a pressed Ctrl key on a hardware keyboard.

We implemented a simple paint application that maps drawing
and erasing to the flexion state of the middle finger. When the
middle finger is flexed, the pen is activated which enables the
user to draw. When bending the middle finger (c.f. Figure 7b),
the eraser will be activated to remove parts of the drawing.
While we demonstrated this concept within a paint application,

(a) (b) (c)
Figure 7. Screenshots of our sample applications implemented on the In-
finiTouch. Figure (a) showcases how a down-swipe with both index and
middle finger selects all files in a file manager, Figure (b) demonstrates
how the position of the middle finger can be used to switch between a pen
and an eraser, and Figure (c) demonstrates an exemplary one-handed
pinch gesture.

it can be applied to a wide range of applications that benefit
from action modifiers and with all four fingers. Amongst
others, this includes opening context menus similar to the
right mouse button, text selection and highlighting, mode
switching (e.g., slower and faster scrolling), 3D navigation,
and providing shortcuts.

Further Use Cases
We present further use cases for InfiniTouch.

One-Handed Pinch and Rotation Gestures
Users need to hold smartphones two-handed or place it on a
surface to perform a pinch or a rotation gesture. We propose to
use a pre-defined finger on the back of the device as the second
finger to perform a pinch/rotation gesture with the thumb on
the front screen. This enables users to zoom or rotate objects
in a one-handed grip as shown in Figure 7c.

Enabling Transient Actions
Avery et al. [4] proposed transient gestures to enable users to
temporarily change the view of an application which can be
rapidly undone. As a zoom in always requires a zoom out to
return to the initial state, they used an additional finger on a
tablet to save the initial state. When this additional finger is
released, it restores the initial state so that users can alter the
view in between. Using our concept of finger positions as a
modifier, we could replace the additional finger with a finger
on the rear that is able to bend and flex.

Improving Reachability
Bergstrom-Lehtovirta and Oulasvirta [8] showed that the
thumb’s range could be modeled with the position of the index
finger’s tip as input. With InfiniTouch, we can determine the
position of the index finger and can thus adapt the user inter-
face to optimize reachability during one-handed interaction.
Moreover, we can assign the functionality to move the screen
content to a specific finger. This enables the finger to move
the screen content to a more reachable position to improve
one-handed interaction as proposed in previous work [42].

DISCUSSION AND LIMITATIONS
We developed InfiniTouch, a system that enables finger-aware
interaction on full-touch smartphones. We developed a full-
touch smartphone prototype and trained a CNN to identify
fingers touching the device surface. We implemented and
showcased a number of applications.

Model Accuracy
We trained a CNN that estimates the fingertip positions with
an MAE of 0.74cm over all three axes. As a comparison,
the average diameter of a human index finger is 1.6cm -
2.0cm [16] while Holz et al. [35] found that traditional touch
interaction has a systematic offset of 0.4cm. Even without
using the positions of the blobs, this already enables users to
perform precise interactions, such as gestures or finger place-
ments as modifiers. Moreover, using the estimated positions
enables differentiation between fingers even if their contact
areas are united due to a low-resolution image. A limitation
of our model is that estimations of more distant fingers (e.g.,
a finger moving without touching the device) become less
accurate since they cannot be sensed physically.

Based on the estimations, we used a nearest neighbor approach
to identify the responsible finger for each blob with an accu-
racy of 95.78%. As we perform this process only when the
number of blobs in the capacitive image changes, we reduce
the processor workload and potential jitter due to noise and
the nature of machine learning. Moreover, since we track the
blobs while keeping their label (if the number of blobs did not
change), labeled blobs stay correctly labeled even if the model
yields an inaccurate estimation in a rare hand posture. This
means that we only identify fingers when they initially touch
or release the device (e.g., new hand grip) with an accuracy
of 95.78% while classification errors cannot occur afterwards.
We provide both blobs as well as estimated positions in our
Android library, and successfully implemented our sample use
cases with both approaches. Further, the estimated location
could be used as a fallback in case the blob detection is not
capable of telling two blobs apart due to the low resolution.

Improving Accuracy and its Sufficiency for Use Cases
Our model estimates the 3D finger positions with an MAE
of 0.74cm and classifies blobs with an accuracy of 95.78%.
While this is sufficient for a reliable recognition of gestures
and the use of absolute positions, future work could further im-
prove the accuracy as follows. Although our 32×28 capacitive
images already comprise over 14 times the amount of sensors
of previous approaches based on flexible PCBs (e.g., 64 [11]
or 24 [53, 54] measurements), further increasing the resolution
could help to improve classification accuracy. High-resolution
capacitive images certainly benefit the blob matching due to
clearer contact area boundaries and also benefit the MAE since
more features of the finger become detectable. Possible techno-
logies include frustrated total internal reflection (FTIR) that
enables high-resolution multi-touch sensing [32] and infrared
sensors integrated into the LCD layer similar to the SUR40
interactive display by Samsung. While these technologies are
yet to be mass-produced for mobile devices, our prototype is
based on hardware that is already publicly available which
enables the community to reproduce InfiniTouch.

The accuracy of our model is well beyond the 80% that pre-
vious work considered sufficient [41]. However, sufficiency
also depends on the action’s consequence (easily recoverable
action vs. permanent action) and how inferences are translated
to actions. For InfiniTouch, the consequence depends on the
action that future developers implement while a wide range of
translation approaches can further minimize accidental acti-
vations. For example, accidental activations of BoD gestures
can be minimized using the confidence score of gesture re-
cognizers, using thresholds for a minimum gesture length, or
using heuristics to differentiate gestures from grip changes
(e.g., only one finger can move at a time). While our imple-
mentation works reliably for the implemented use cases, we
also suggest that future BoD gestures should be designed with
false positives and negatives in mind. Moreover, the flexion
state example could also involve users in avoiding unintended
actions by using visual elements to indicate the recognized
flexion state (i.e. action).

Practicality of Use Cases
We designed the sample use cases solely to demonstrate the
possibilities offered by InfiniTouch. Thus, we chose fingers
and movements that are easy to explain and understand, but
we also designed them to be ergonomically viable based on
previous findings by Le et al. [45]. Designing our explicit
BoD gestures, we considered these findings that showed that
index and middle fingers can move comfortably within a large
area (around top to center for similar devices) without grip
changes and independent from the grip. This indicates that our
presented BoD gestures can be performed comfortably without
a grip change. Moreover, subtly bending the middle finger for
the second use case also takes place within the comfortable
area. As this paper focuses on the technical contribution, future
work could investigate the comfort of such BoD gestures and
how to communicate them to end users [52].

Reproducibility with Publicly Available Hardware
We presented an approach to prototype a full-touch smartp-
hone with publicly available hardware. While we used an LG
Nexus 5 as the basis, our approach can be applied with any
smartphone. This enables the community to reproduce our pro-
totype and use our model to explore finger-aware interaction
with InfiniTouch. As a tradeoff, data from both touchscreens
and the edge sensors need to be synchronized over network
which adds a latency of 7.2ms while an additional hardware
container is required. Despite an additional container, our
prototype can still be used in mobile situations (e.g., in wal-
king studies) since the hardware container is designed to be
fixated on the forearm. Moreover, smartphone manufacturers
could produce proprietary components for future commodity
smartphones so that a hardware container is not needed in
a mass-market version. These components could comprise
flexible PCBs with a sufficient amount of sensors. These are
already used in consumer products (e.g., the Microsoft Touch
Mouse) and provide capacitive images of touches. Using such
components would also avoid the synchronization of data over
the network while manufacturers can directly use our model
for finger-aware touch interaction on the whole device surface.

Specialization on Common One-Handed Grips
The model presented in this work focuses on one-handed grips.
Previous work has shown that fingers can comfortably reach
around 70% of the back (for similar device sizes [46, 45]) du-
ring one-handed smartphone interaction without grip changes.
This enables the fingers on the back to be used for a wide range
of explicit (e.g. BoD/side gestures) and implicit interactions
(e.g. flexion/grip sensing) to increase the expressiveness of
one-handed touch input. Since our comprehensive dataset co-
vers a wide range of typical one-handed grips as performed in
the study, our model also works when some fingers of the hol-
ding hand are not touching and stays robust even when other
hand parts (e.g. palm) are touching or releasing. Two-handed
grips and further touches beyond usual one-handed grips (e.g.,
using other body parts) are currently not expected by our mo-
del and would lead to unexpected estimations. However, with
minor adaptations to the implementation, our model can even
be used to identify finger positions of the holding hand while
the other hand performs input on the front. While we focused
on right-handed grips to show the feasibility of our approach,
our procedure and publicly available source code enables re-
searchers to easily extend our work to other devices and use
cases (e.g., left-handed or bimanual grips for tablets).

CONCLUSION
We presented InfiniTouch, a smartphone prototype that enables
touch input on the whole device surface and identifies fingers
touching the device with an accuracy of 95.78%. In contrast
to previous approaches for finger-aware input, our prototype is
the first that does not require external hardware (e.g., wearable
sensors and cameras), has the form factor of a standard smartp-
hone, and identifies all fingers during one-handed interaction
with a usable accuracy. We further based our prototype on pu-
blicly available components and release schemes and source
code so that researchers who want to explore finger-aware
interaction on full-touch smartphones can re-implement our
system. We presented and implemented a series of use cases
to showcase our system.

As we are publicly releasing our dataset which includes the
3D motion data of all finger joints and the capacitive images,
future work could train a model to reconstruct the hand posture
that is used to hold the device. This enables a wide range of
use cases such as transferring the hand into virtual reality,
enabling pre-touch sensing with standard touchscreens, and
predicting actions based on hand kinematics.

PROTOTYPE SCHEMES, DATASET, AND MODELS
We release the PCB scheme and 3D models of our prototype
for the reader to reproduce our prototype. Moreover, we are
publicly releasing the data set, the finger position estimation
model, and our Android library for InfiniTouch to enable inte-
rested parties to run and explore finger-aware touch interaction
on a full-touch smartphone. To enable the reader to extend our
models (e.g., for left-handed grips or to estimate all joints), we
also provide our Jupyter notebooks (in Python) that contain
the training and test procedures. The data can be found on
https://github.com/interactionlab/InfiniTouch.

ACKNOWLEDGEMENTS
This work is supported through project C04 of
SFB/Transregio 161, the MWK Baden-Württemberg
within the Juniorprofessuren-Programm, and by the DFG
within the SimTech Cluster of Excellence (EXC 310/2).

REFERENCES
1. Lisa Anthony and Jacob O. Wobbrock. 2012.

$N-protractor: A Fast and Accurate Multistroke
Recognizer. In Proceedings of Graphics Interface 2012
(GI ’12). Canadian Information Processing Society,
Toronto, Ont., Canada, Canada, 117–120.
http://dl.acm.org/citation.cfm?id=2305276.2305296

2. Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung.
2017. Structured Pruning of Deep Convolutional Neural
Networks. J. Emerg. Technol. Comput. Syst. 13, 3, Article
32 (Feb. 2017), 18 pages. DOI:
http://dx.doi.org/10.1145/3005348

3. Oscar Kin-Chung Au and Chiew-Lan Tai. 2010.
Multitouch Finger Registration and Its Applications. In
Proceedings of the 22Nd Conference of the
Computer-Human Interaction Special Interest Group of
Australia on Computer-Human Interaction (OZCHI ’10).
ACM, New York, NY, USA, 41–48. DOI:
http://dx.doi.org/10.1145/1952222.1952233

4. Jeff Avery, Sylvain Malacria, Mathieu Nancel, Géry
Casiez, and Edward Lank. 2018. Introducing Transient
Gestures to Improve Pan and Zoom on Touch Surfaces. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New
York, NY, USA, 8. DOI:
http://dx.doi.org/10.1145/3173574.3173599

5. Shiri Azenkot and Shumin Zhai. 2012. Touch Behavior
with Different Postures on Soft Smartphone Keyboards.
In Proceedings of the 14th International Conference on
Human-computer Interaction with Mobile Devices and
Services (MobileHCI ’12). ACM, New York, NY, USA,
251–260. DOI:
http://dx.doi.org/10.1145/2371574.2371612

6. Patrick Bader, Valentin Schwind, Niels Henze, Stefan
Schneegass, Nora Broy, and Albrecht Schmidt. 2014.
Design and Evaluation of a Layered Handheld 3D
Display with Touch-sensitive Front and Back. In
Proceedings of the 8th Nordic Conference on
Human-Computer Interaction: Fun, Fast, Foundational
(NordiCHI ’14). ACM, New York, NY, USA, 315–318.
DOI:http://dx.doi.org/10.1145/2639189.2639257

7. Hrvoje Benko, T. Scott Saponas, Dan Morris, and Desney
Tan. 2009. Enhancing Input on and Above the Interactive
Surface with Muscle Sensing. In Proceedings of the ACM
International Conference on Interactive Tabletops and
Surfaces (ITS ’09). ACM, New York, NY, USA, 93–100.
DOI:http://dx.doi.org/10.1145/1731903.1731924

8. Joanna Bergstrom-Lehtovirta and Antti Oulasvirta. 2014.
Modeling the Functional Area of the Thumb on Mobile
Touchscreen Surfaces. In Proceedings of the 32Nd

https://github.com/interactionlab/InfiniTouch
http://dl.acm.org/citation.cfm?id=2305276.2305296
http://dx.doi.org/10.1145/3005348
http://dx.doi.org/10.1145/1952222.1952233
http://dx.doi.org/10.1145/3173574.3173599
http://dx.doi.org/10.1145/2371574.2371612
http://dx.doi.org/10.1145/2639189.2639257
http://dx.doi.org/10.1145/1731903.1731924

Annual ACM Conference on Human Factors in
Computing Systems (CHI ’14). ACM, New York, NY,
USA, 1991–2000. DOI:
http://dx.doi.org/10.1145/2556288.2557354

9. Xiang Cao, A. D. Wilson, R. Balakrishnan, K. Hinckley,
and S. E. Hudson. 2008. ShapeTouch: Leveraging contact
shape on interactive surfaces. In 2008 3rd IEEE
International Workshop on Horizontal Interactive Human
Computer Systems. 129–136. DOI:
http://dx.doi.org/10.1109/TABLETOP.2008.4660195

10. Elie Cattan, Amélie Rochet-Capellan, Pascal Perrier, and
François Bérard. 2015. Reducing Latency with a
Continuous Prediction: Effects on Users’ Performance in
Direct-Touch Target Acquisitions. In Proceedings of the
2015 International Conference on Interactive Tabletops &
Surfaces (ITS ’15). ACM, New York, NY, USA, 205–214.
DOI:http://dx.doi.org/10.1145/2817721.2817736

11. Wook Chang, Kee Eung Kim, Hyunjeong Lee, Joon Kee
Cho, Byung Seok Soh, Jung Hyun Shim, Gyunghye
Yang, Sung-Jung Cho, and Joonah Park. 2006.
Recognition of grip-patterns by using capacitive touch
sensors. In Industrial Electronics, 2006 IEEE
International Symposium on, Vol. 4. IEEE, 2936–2941.

12. Lung-Pan Cheng, Fang-I Hsiao, Yen-Ting Liu, and
Mike Y. Chen. 2012. iRotate Grasp: Automatic Screen
Rotation Based on Grasp of Mobile Devices. In Adjunct
Proceedings of the 25th Annual ACM Symposium on User
Interface Software and Technology (UIST Adjunct
Proceedings ’12). ACM, New York, NY, USA, 15–16.
DOI:http://dx.doi.org/10.1145/2380296.2380305

13. Lung-Pan Cheng, Hsiang-Sheng Liang, Che-Yang Wu,
and Mike Y. Chen. 2013. iGrasp: Grasp-based Adaptive
Keyboard for Mobile Devices. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13). ACM, New York, NY, USA,
3037–3046. DOI:
http://dx.doi.org/10.1145/2470654.2481422

14. Ashley Colley and Jonna Häkkilä. 2014. Exploring
Finger Specific Touch Screen Interaction for Mobile
Phone User Interfaces. In Proceedings of the 26th
Australian Computer-Human Interaction Conference on
Designing Futures: The Future of Design (OzCHI ’14).
ACM, New York, NY, USA, 539–548. DOI:
http://dx.doi.org/10.1145/2686612.2686699

15. Christian Corsten, Bjoern Daehlmann, Simon Voelker,
and Jan Borchers. 2017. BackXPress: Using
Back-of-Device Finger Pressure to Augment Touchscreen
Input on Smartphones. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA, 4654–4666. DOI:
http://dx.doi.org/10.1145/3025453.3025565

16. Kiran Dandekar, Balasundar I Raju, and Mandayam A
Srinivasan. 2003. 3-D finite-element models of human
and monkey fingertips to investigate the mechanics of
tactile sense. Journal of biomechanical engineering 125,
5 (2003), 682–691.

17. Alexander De Luca, Emanuel von Zezschwitz, Ngo
Dieu Huong Nguyen, Max-Emanuel Maurer, Elisa
Rubegni, Marcello Paolo Scipioni, and Marc
Langheinrich. 2013. Back-of-device Authentication on
Smartphones. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’13).
ACM, New York, NY, USA, 2389–2398. DOI:
http://dx.doi.org/10.1145/2470654.2481330

18. John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization. Journal of Machine Learning
Research 12 (July 2011), 2121–2159.
http://dl.acm.org/citation.cfm?id=1953048.2021068

19. Philipp Ewerling, Alexander Kulik, and Bernd Froehlich.
2012. Finger and Hand Detection for Multi-touch
Interfaces Based on Maximally Stable Extremal Regions.
In Proceedings of the 2012 ACM International
Conference on Interactive Tabletops and Surfaces (ITS
’12). ACM, New York, NY, USA, 173–182. DOI:
http://dx.doi.org/10.1145/2396636.2396663

20. Anna Maria Feit, Daryl Weir, and Antti Oulasvirta. 2016.
How We Type: Movement Strategies and Performance in
Everyday Typing. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 4262–4273. DOI:
http://dx.doi.org/10.1145/2858036.2858233

21. Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari
Finkel. 1977. An Algorithm for Finding Best Matches in
Logarithmic Expected Time. ACM Trans. Math. Softw. 3,
3 (Sept. 1977), 209–226. DOI:
http://dx.doi.org/10.1145/355744.355745

22. Emilien Ghomi, Stéphane Huot, Olivier Bau, Michel
Beaudouin-Lafon, and Wendy E. Mackay. 2013. ArpèGe:
Learning Multitouch Chord Gestures Vocabularies. In
Proceedings of the 2013 ACM International Conference
on Interactive Tabletops and Surfaces (ITS ’13). ACM,
New York, NY, USA, 209–218. DOI:
http://dx.doi.org/10.1145/2512349.2512795

23. Hyunjae Gil, DoYoung Lee, Seunggyu Im, and Ian
Oakley. 2017. TriTap: Identifying Finger Touches on
Smartwatches. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA, 3879–3890. DOI:
http://dx.doi.org/10.1145/3025453.3025561

24. Nicholas Gillian and Joseph A. Paradiso. 2014. The
Gesture Recognition Toolkit. J. Mach. Learn. Res. 15, 1
(Jan. 2014), 3483–3487.
http://dl.acm.org/citation.cfm?id=2627435.2697076

25. Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural
networks. In In Proceedings of the International
Conference on Artificial Intelligence and Statistics.
(AISTATS’10), Vol. 9. JMLR.org, 249–256. http:
//www.jmlr.org/proceedings/papers/v9/glorot10a.html

http://dx.doi.org/10.1145/2556288.2557354
http://dx.doi.org/10.1109/TABLETOP.2008.4660195
http://dx.doi.org/10.1145/2817721.2817736
http://dx.doi.org/10.1145/2380296.2380305
http://dx.doi.org/10.1145/2470654.2481422
http://dx.doi.org/10.1145/2686612.2686699
http://dx.doi.org/10.1145/3025453.3025565
http://dx.doi.org/10.1145/2470654.2481330
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dx.doi.org/10.1145/2396636.2396663
http://dx.doi.org/10.1145/2858036.2858233
http://dx.doi.org/10.1145/355744.355745
http://dx.doi.org/10.1145/2512349.2512795
http://dx.doi.org/10.1145/3025453.3025561
http://dl.acm.org/citation.cfm?id=2627435.2697076
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

26. Nan-Wei Gong, Jürgen Steimle, Simon Olberding, Steve
Hodges, Nicholas Edward Gillian, Yoshihiro Kawahara,
and Joseph A. Paradiso. 2014. PrintSense: A Versatile
Sensing Technique to Support Multimodal Flexible
Surface Interaction. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’14). ACM, New York, NY, USA, 1407–1410. DOI:
http://dx.doi.org/10.1145/2556288.2557173

27. Emilio Granell and Luis A. Leiva. 2016. Less Is More:
Efficient Back-of-Device Tap Input Detection Using
Built-in Smartphone Sensors. In Proceedings of the 2016
ACM on Interactive Surfaces and Spaces (ISS ’16). ACM,
New York, NY, USA, 5–11. DOI:
http://dx.doi.org/10.1145/2992154.2992166

28. Anhong Guo, Robert Xiao, and Chris Harrison. 2015.
CapAuth: Identifying and Differentiating User
Handprints on Commodity Capacitive Touchscreens. In
Proceedings of the 2015 International Conference on
Interactive Tabletops & Surfaces (ITS ’15). ACM, New
York, NY, USA, 59–62. DOI:
http://dx.doi.org/10.1145/2817721.2817722

29. Aakar Gupta, Muhammed Anwar, and Ravin
Balakrishnan. 2016. Porous Interfaces for Small Screen
Multitasking Using Finger Identification. In Proceedings
of the 29th Annual Symposium on User Interface
Software and Technology (UIST ’16). ACM, New York,
NY, USA, 145–156. DOI:
http://dx.doi.org/10.1145/2984511.2984557

30. Aakar Gupta and Ravin Balakrishnan. 2016. DualKey:
Miniature Screen Text Entry via Finger Identification. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 59–70. DOI:
http://dx.doi.org/10.1145/2858036.2858052

31. Charlotte Häger-Ross and Marc H Schieber. 2000.
Quantifying the independence of human finger
movements: comparisons of digits, hands, and movement
frequencies. The Journal of neuroscience 20, 22 (2000),
8542–8550.

32. Jefferson Y. Han. 2005. Low-cost Multi-touch Sensing
Through Frustrated Total Internal Reflection. In
Proceedings of the 18th Annual ACM Symposium on User
Interface Software and Technology (UIST ’05). ACM,
New York, NY, USA, 115–118. DOI:
http://dx.doi.org/10.1145/1095034.1095054

33. Song Han, Huizi Mao, and William J. Dally. 2015. Deep
Compression: Compressing Deep Neural Network with
Pruning, Trained Quantization and Huffman Coding.
CoRR abs/1510.00149 (2015).
http://arxiv.org/abs/1510.00149

34. David Holman, Andreas Hollatz, Amartya Banerjee, and
Roel Vertegaal. 2013. Unifone: Designing for Auxiliary
Finger Input in One-handed Mobile Interactions. In
Proceedings of the 7th International Conference on
Tangible, Embedded and Embodied Interaction (TEI ’13).
ACM, New York, NY, USA, 177–184. DOI:
http://dx.doi.org/10.1145/2460625.2460653

35. Christian Holz and Patrick Baudisch. 2011.
Understanding Touch. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’11). ACM, New York, NY, USA, 2501–2510. DOI:
http://dx.doi.org/10.1145/1978942.1979308

36. Christian Holz, Senaka Buthpitiya, and Marius Knaust.
2015. Bodyprint: Biometric User Identification on
Mobile Devices Using the Capacitive Touchscreen to
Scan Body Parts. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(CHI ’15). ACM, New York, NY, USA, 3011–3014. DOI:
http://dx.doi.org/10.1145/2702123.2702518

37. Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, and
others. 2003. A practical guide to support vector
classification. (2003).

38. Sergey Ioffe and Christian Szegedy. 2015. Batch
Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. CoRR abs/1502.03167
(2015). http://arxiv.org/abs/1502.03167

39. Stefanie Jachner, G Van den Boogaart, Thomas Petzoldt,
and others. 2007. Statistical methods for the qualitative
assessment of dynamic models with time delay (R
Package qualV). Journal of Statistical Software 22, 8
(2007), 1–30.

40. Amy K. Karlson and Benjamin B. Bederson. 2006.
Studies in One-Handed Mobile Design: Habit, Desire and
Agility. In Proceedings of the 4th ERCIM Workshop on
User Interfaces for All (UI4ALL).

41. Vassilis Kostakos and Mirco Musolesi. 2017. Avoiding
Pitfalls when Using Machine Learning in HCI Studies.
interactions 24, 4 (June 2017), 34–37. DOI:
http://dx.doi.org/10.1145/3085556

42. Huy Viet Le, Patrick Bader, Thomas Kosch, and Niels
Henze. 2016. Investigating Screen Shifting Techniques to
Improve One-Handed Smartphone Usage. In Proceedings
of the 9th Nordic Conference on Human-Computer
Interaction (NordiCHI ’16). ACM, New York, NY, USA,
Article 27, 10 pages. DOI:
http://dx.doi.org/10.1145/2971485.2971562

43. Huy Viet Le, Thomas Kosch, Patrick Bader, Sven Mayer,
and Niels Henze. 2018. PalmTouch: Using the Palm as an
Additional Input Modality on Commodity Smartphones.
In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New
York, NY, USA, 10. DOI:
http://dx.doi.org/10.1145/3173574.3173934

44. Huy Viet Le, Sven Mayer, Patrick Bader, and Niels
Henze. 2017. A Smartphone Prototype for Touch
Interaction on the Whole Device Surface. In Proceedings
of the 19th International Conference on
Human-Computer Interaction with Mobile Devices and
Services (MobileHCI EA ’17). ACM, New York, NY,
USA, Article 100, 8 pages. DOI:
http://dx.doi.org/10.1145/3098279.3122143

http://dx.doi.org/10.1145/2556288.2557173
http://dx.doi.org/10.1145/2992154.2992166
http://dx.doi.org/10.1145/2817721.2817722
http://dx.doi.org/10.1145/2984511.2984557
http://dx.doi.org/10.1145/2858036.2858052
http://dx.doi.org/10.1145/1095034.1095054
http://arxiv.org/abs/1510.00149
http://dx.doi.org/10.1145/2460625.2460653
http://dx.doi.org/10.1145/1978942.1979308
http://dx.doi.org/10.1145/2702123.2702518
http://arxiv.org/abs/1502.03167
http://dx.doi.org/10.1145/3085556
http://dx.doi.org/10.1145/2971485.2971562
http://dx.doi.org/10.1145/3173574.3173934
http://dx.doi.org/10.1145/3098279.3122143

45. Huy Viet Le, Sven Mayer, Patrick Bader, and Niels
Henze. 2018. Fingers’ Range and Comfortable Area for
One-Handed Smartphone Interaction Beyond the
Touchscreen. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI’18).
ACM, New York, NY, USA. DOI:
http://dx.doi.org/10.1145/3173574.3173605

46. Huy Viet Le, Sven Mayer, Katrin Wolf, and Niels Henze.
2016. Finger Placement and Hand Grasp During
Smartphone Interaction. In Proceedings of the 2016 CHI
Conference Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’16). ACM, New York, NY,
USA, 2576–2584. DOI:
http://dx.doi.org/10.1145/2851581.2892462

47. Songil Lee, Gyouhyung Kyung, Jungyong Lee, Seung Ki
Moon, and Kyoung Jong Park. 2016. Grasp and index
finger reach zone during one-handed smartphone rear
interaction: effects of task type, phone width and hand
length. Ergonomics 59, 11 (2016), 1462–1472. DOI:
http://dx.doi.org/10.1080/00140139.2016.1146346

48. Nicolai Marquardt, Johannes Kiemer, David Ledo,
Sebastian Boring, and Saul Greenberg. 2011. Designing
User-, Hand-, and Handpart-aware Tabletop Interactions
with the TouchID Toolkit. In Proceedings of the ACM
International Conference on Interactive Tabletops and
Surfaces (ITS ’11). ACM, New York, NY, USA, 21–30.
DOI:http://dx.doi.org/10.1145/2076354.2076358

49. Damien Masson, Alix Goguey, Sylvain Malacria, and
Géry Casiez. 2017. WhichFingers: Identifying Fingers on
Touch Surfaces and Keyboards Using Vibration Sensors.
In Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology (UIST ’17).
ACM, New York, NY, USA, 41–48. DOI:
http://dx.doi.org/10.1145/3126594.3126619

50. Fabrice Matulic, Daniel Vogel, and Raimund Dachselt.
2017. Hand Contact Shape Recognition for
Posture-Based Tabletop Widgets and Interaction. In
Proceedings of the 2017 ACM International Conference
on Interactive Surfaces and Spaces (ISS ’17). ACM, New
York, NY, USA, 3–11. DOI:
http://dx.doi.org/10.1145/3132272.3134126

51. Sven Mayer, Huy Viet Le, and Niels Henze. 2017.
Estimating the Finger Orientation on Capacitive
Touchscreens Using Convolutional Neural Networks. In
Proceedings of the 2017 ACM International Conference
on Interactive Surfaces and Spaces (ISS ’17). ACM, New
York, NY, USA, 220–229. DOI:
http://dx.doi.org/10.1145/3132272.3134130

52. Sven Mayer, Lars Lischke, Adrian Lanksweirt, Huy Viet
Le, and Niels Henze. 2018. How to Communicate New
Input Techniques. In Proceedings of the 10th Nordic
Conference on Human-Computer Interaction (NordiCHI
’18). ACM, New York, NY, USA, 13. DOI:
http://dx.doi.org/10.1145/3240167.3240176

53. Mohammad Faizuddin Mohd Noor, Andrew Ramsay,
Stephen Hughes, Simon Rogers, John Williamson, and
Roderick Murray-Smith. 2014. 28 Frames Later:
Predicting Screen Touches from Back-of-device Grip
Changes. In Proceedings of the 32nd Annual ACM
Conference on Human Factors in Computing Systems
(CHI ’14). ACM, New York, NY, USA, 2005–2008. DOI:
http://dx.doi.org/10.1145/2556288.2557148

54. Mohammad Faizuddin Mohd Noor, Simon Rogers, and
John Williamson. 2016. Detecting Swipe Errors on
Touchscreens Using Grip Modulation. In Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16). ACM, New York, NY,
USA, 1909–1920. DOI:
http://dx.doi.org/10.1145/2858036.2858474

55. Roderick Murray-Smith. 2017. Stratified, computational
interaction via machine learning. In Eighteenth Yale
Workshop on Adaptive and Learning Systems (New
Haven, CT, USA. 95–101.

56. Sundar Murugappan, Vinayak, Niklas Elmqvist, and
Karthik Ramani. 2012. Extended Multitouch: Recovering
Touch Posture and Differentiating Users Using a Depth
Camera. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’12). ACM, New York, NY, USA, 487–496. DOI:
http://dx.doi.org/10.1145/2380116.2380177

57. Rajalakshmi Nandakumar, Vikram Iyer, Desney Tan, and
Shyamnath Gollakota. 2016. FingerIO: Using Active
Sonar for Fine-Grained Finger Tracking. In Proceedings
of the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16). ACM, New York, NY,
USA, 1515–1525. DOI:
http://dx.doi.org/10.1145/2858036.2858580

58. A Poston. 2000. Human engineering design data digest.
Washington, DC: Department of Defense Human Factors
Engineering Technical Advisory Group (2000).

59. Simon Robinson, Nitendra Rajput, Matt Jones, Anupam
Jain, Shrey Sahay, and Amit Nanavati. 2011. TapBack:
Towards Richer Mobile Interfaces in Impoverished
Contexts. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’11). ACM,
New York, NY, USA, 2733–2736. DOI:
http://dx.doi.org/10.1145/1978942.1979345

60. Anne Roudaut, Mathias Baglioni, and Eric Lecolinet.
2009. TimeTilt: using sensor-based gestures to travel
through multiple applications on a mobile device. In IFIP
Conference on Human-Computer Interaction. Springer,
830–834.

61. Wenjie Ruan, Quan Z. Sheng, Lei Yang, Tao Gu, Peipei
Xu, and Longfei Shangguan. 2016. AudioGest: Enabling
Fine-grained Hand Gesture Detection by Decoding Echo
Signal. In Proceedings of the 2016 ACM International
Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp ’16). ACM, New York, NY, USA, 474–485.
DOI:http://dx.doi.org/10.1145/2971648.2971736

http://dx.doi.org/10.1145/3173574.3173605
http://dx.doi.org/10.1145/2851581.2892462
http://dx.doi.org/10.1080/00140139.2016.1146346
http://dx.doi.org/10.1145/2076354.2076358
http://dx.doi.org/10.1145/3126594.3126619
http://dx.doi.org/10.1145/3132272.3134126
http://dx.doi.org/10.1145/3132272.3134130
http://dx.doi.org/10.1145/3240167.3240176
http://dx.doi.org/10.1145/2556288.2557148
http://dx.doi.org/10.1145/2858036.2858474
http://dx.doi.org/10.1145/2380116.2380177
http://dx.doi.org/10.1145/2858036.2858580
http://dx.doi.org/10.1145/1978942.1979345
http://dx.doi.org/10.1145/2971648.2971736

62. Erh-li Early Shen, Sung-sheng Daniel Tsai, Hao-hua Chu,
Yung-jen Jane Hsu, and Chi-wen Euro Chen. 2009.
Double-side Multi-touch Input for Mobile Devices. In
CHI ’09 Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’09). ACM, New York, NY,
USA, 4339–4344. DOI:
http://dx.doi.org/10.1145/1520340.1520663

63. Shaikh Shawon Arefin Shimon, Sarah Morrison-Smith,
Noah John, Ghazal Fahimi, and Jaime Ruiz. 2015.
Exploring User-Defined Back-Of-Device Gestures for
Mobile Devices. In Proceedings of the 17th International
Conference on Human-Computer Interaction with Mobile
Devices and Services (MobileHCI ’15). ACM, New York,
NY, USA, 227–232. DOI:
http://dx.doi.org/10.1145/2785830.2785890

64. Smith Aaron. 2015. A "Week in the Life" Analysis of
Smartphone Users.
http://www.pewinternet.org/2015/04/01/chapter-three-a

-week-in-the-life-analysis-of-smartphone-users/.
(2015). [last accessed 2018-02-02].

65. Kiseok Sung, Jay Cho, and Andris Freivalds. 2016.
Effects of grip span in one-handed thumb interaction with
a smartphone. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting 60, 1 (2016),
1048–1052. DOI:
http://dx.doi.org/10.1177/1541931213601243

66. Brandon T. Taylor and V Michael Bove. 2008. The Bar of
Soap: A Grasp Recognition System Implemented in a
Multi-functional Handheld Device. In CHI ’08 Extended
Abstracts on Human Factors in Computing Systems (CHI
EA ’08). ACM, New York, NY, USA, 3459–3464. DOI:
http://dx.doi.org/10.1145/1358628.1358874

67. Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for
machine learning 4, 2 (2012), 26–31.

68. Grigorios Tsoumakas and Ioannis Katakis. 2006.
Multi-label classification: An overview. International
Journal of Data Warehousing and Mining 3, 3 (2006).

69. Ken Turkowski. 1990. Filters for common resampling
tasks. In Graphics gems. Academic Press Professional,
Inc., 147–165.

70. Radu-Daniel Vatavu, Lisa Anthony, and Jacob O.
Wobbrock. 2012. Gestures As Point Clouds: A $P
Recognizer for User Interface Prototypes. In Proceedings
of the 14th ACM International Conference on Multimodal
Interaction (ICMI ’12). ACM, New York, NY, USA,
273–280. DOI:
http://dx.doi.org/10.1145/2388676.2388732

71. Jingtao Wang and John Canny. 2004. FingerSense:
Augmenting Expressiveness to Physical Pushing Button
by Fingertip Identification. In CHI ’04 Extended
Abstracts on Human Factors in Computing Systems (CHI
EA ’04). ACM, New York, NY, USA, 1267–1270. DOI:
http://dx.doi.org/10.1145/985921.986040

72. Wei Wang, Alex X. Liu, and Ke Sun. 2016. Device-free
Gesture Tracking Using Acoustic Signals. In Proceedings
of the 22Nd Annual International Conference on Mobile
Computing and Networking (MobiCom ’16). ACM, New
York, NY, USA, 82–94. DOI:
http://dx.doi.org/10.1145/2973750.2973764

73. Andrew D. Wilson. 2010. Using a Depth Camera As a
Touch Sensor. In ACM International Conference on
Interactive Tabletops and Surfaces (ITS ’10). ACM, New
York, NY, USA, 69–72. DOI:
http://dx.doi.org/10.1145/1936652.1936665

74. Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li.
2007. Gestures Without Libraries, Toolkits or Training: A
$1 Recognizer for User Interface Prototypes. In
Proceedings of the 20th Annual ACM Symposium on User
Interface Software and Technology (UIST ’07). ACM,
New York, NY, USA, 159–168. DOI:
http://dx.doi.org/10.1145/1294211.1294238

75. Katrin Wolf, Christian Müller-Tomfelde, Kelvin Cheng,
and Ina Wechsung. 2012a. Does Proprioception Guide
Back-of-device Pointing As Well As Vision?. In CHI ’12
Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’12). ACM, New York, NY, USA,
1739–1744. DOI:
http://dx.doi.org/10.1145/2212776.2223702

76. Katrin Wolf, Christian Müller-Tomfelde, Kelvin Cheng,
and Ina Wechsung. 2012b. PinchPad: Performance of
Touch-based Gestures While Grasping Devices. In
Proceedings of the Sixth International Conference on
Tangible, Embedded and Embodied Interaction (TEI ’12).
ACM, New York, NY, USA, 103–110. DOI:
http://dx.doi.org/10.1145/2148131.2148155

77. Pui Chung Wong, Hongbo Fu, and Kening Zhu. 2016.
Back-Mirror: Back-of-device One-handed Interaction on
Smartphones. In SIGGRAPH ASIA 2016 Mobile
Graphics and Interactive Applications (SA ’16). ACM,
New York, NY, USA, 10:1–10:5. DOI:
http://dx.doi.org/10.1145/2999508.2999522

78. Robert Xiao, Julia Schwarz, and Chris Harrison. 2015.
Estimating 3D Finger Angle on Commodity
Touchscreens. In Proceedings of the 2015 International
Conference on Interactive Tabletops & Surfaces (ITS ’15).
ACM, New York, NY, USA, 47–50. DOI:
http://dx.doi.org/10.1145/2817721.2817737

79. Xiang Xiao, Teng Han, and Jingtao Wang. 2013.
LensGesture: Augmenting Mobile Interactions with
Back-of-device Finger Gestures. In Proceedings of the
15th ACM on International Conference on Multimodal
Interaction (ICMI ’13). ACM, New York, NY, USA,
287–294. DOI:
http://dx.doi.org/10.1145/2522848.2522850

80. Cheng Zhang, Anhong Guo, Dingtian Zhang, Caleb
Southern, Rosa Arriaga, and Gregory Abowd. 2015.
BeyondTouch: Extending the Input Language with
Built-in Sensors on Commodity Smartphones. In

http://dx.doi.org/10.1145/1520340.1520663
http://dx.doi.org/10.1145/2785830.2785890
http://www.pewinternet.org/2015/04/01/chapter-three-a-week-in-the-life-analysis-of-smartphone-users/
http://www.pewinternet.org/2015/04/01/chapter-three-a-week-in-the-life-analysis-of-smartphone-users/
http://dx.doi.org/10.1177/1541931213601243
http://dx.doi.org/10.1145/1358628.1358874
http://dx.doi.org/10.1145/2388676.2388732
http://dx.doi.org/10.1145/985921.986040
http://dx.doi.org/10.1145/2973750.2973764
http://dx.doi.org/10.1145/1936652.1936665
http://dx.doi.org/10.1145/1294211.1294238
http://dx.doi.org/10.1145/2212776.2223702
http://dx.doi.org/10.1145/2148131.2148155
http://dx.doi.org/10.1145/2999508.2999522
http://dx.doi.org/10.1145/2817721.2817737
http://dx.doi.org/10.1145/2522848.2522850

Proceedings of the 20th International Conference on
Intelligent User Interfaces (IUI ’15). ACM, New York,
NY, USA, 67–77. DOI:
http://dx.doi.org/10.1145/2678025.2701374

81. Yang Zhang, Gierad Laput, and Chris Harrison. 2017.
Electrick: Low-Cost Touch Sensing Using Electric Field
Tomography. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (CHI ’17).
ACM, New York, NY, USA, 1–14. DOI:
http://dx.doi.org/10.1145/3025453.3025842

82. Yang Zhang, Junhan Zhou, Gierad Laput, and Chris
Harrison. 2016. SkinTrack: Using the Body As an
Electrical Waveguide for Continuous Finger Tracking on
the Skin. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems (CHI ’16). ACM,
New York, NY, USA, 1491–1503. DOI:
http://dx.doi.org/10.1145/2858036.2858082

83. Jingjie Zheng and Daniel Vogel. 2016. Finger-Aware
Shortcuts. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems (CHI ’16). ACM,
New York, NY, USA, 4274–4285. DOI:
http://dx.doi.org/10.1145/2858036.2858355

http://dx.doi.org/10.1145/2678025.2701374
http://dx.doi.org/10.1145/3025453.3025842
http://dx.doi.org/10.1145/2858036.2858082
http://dx.doi.org/10.1145/2858036.2858355

	Introduction
	Background and Related Work
	Finger-Aware Touch Interaction
	Touch Sensing beyond the Front Touchscreen
	Summary

	Full-Touch Smartphone Prototype
	Handheld Device
	Hardware Container
	Capacitive Images and Interconnection

	Ground Truth Data Collection
	Apparatus
	Design
	Procedure
	Participants

	Finger Identification Model
	Data Set & Preprocessing
	Estimating the Fingertip Positions using CNNs
	Identifying Touches from Individual Fingers
	Validation

	Mobile Implementation & Sample Applications
	Mobile Implementation
	Using Finger Identification in the Application Layer
	Sample Use Cases
	Further Use Cases

	Discussion and Limitations
	Model Accuracy
	Improving Accuracy and its Sufficiency for Use Cases
	Practicality of Use Cases
	Reproducibility with Publicly Available Hardware
	Specialization on Common One-Handed Grips

	Conclusion
	Prototype Schemes, Dataset, and Models
	Acknowledgements
	References

