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Figure 1. WorldGaze simultaneously opens the front and rear camera on smartphones. The front camera is used to track the user’s 
3D head vector, which is then raycast into the world as seen by the rear camera. This allows users to intuitively define an object or 
region of interest using their head gaze, which voice assistants can utilize for more precise and natural interactions (right bottom).  
 

ABSTRACT 
Contemporary voice assistants require that objects of interest 
be specified in spoken commands. Of course, users are often 
looking directly at the object or place of interest – fine-
grained, contextual information that is currently unused. We 
present WorldGaze, a software-only method for smartphones 
that provides the real-world gaze location of a user that voice 
agents can utilize for rapid, natural, and precise interactions. 
We achieve this by simultaneously opening the front and rear 
cameras of a smartphone. The front-facing camera is used to 
track the head in 3D, including estimating its direction 
vector. As the geometry of the front and back cameras are 
fixed and known, we can raycast the head vector into the 3D 
world scene as captured by the rear-facing camera. This 
allows the user to intuitively define an object or region of 
interest using their head gaze. We started our investigations 
with a qualitative exploration of competing methods, before 
developing a functional, real-time implementation. We 
conclude with an evaluation that shows WorldGaze can be 
quick and accurate, opening new multimodal gaze+voice 
interactions for mobile voice agents. 
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INTRODUCTION 
Today’s voice assistants lack fine-grained contextual 
awareness, requiring users to be unambiguous in their voice 
commands. In a smart home setting, one cannot simply say 
“turn that up” without providing extra context, even when 
the object of use would be obvious to humans in the room 
(e.g., when watching TV, cooking on a stove, listening to 
music on a sound system). This problem is particularly acute 
in mobile voice interactions, where users are on the go and 
the physical context is constantly changing. Even with GPS, 
mobile voice agents cannot resolve questions like “when 
does this close?” or “what is the rating of this restaurant?” 
(see Figure 1). 
Users are often directly looking at the objects they are 
inquiring about. This real-world gaze location is an obvious 
source of fine-grained, contextual information that could 
both resolve ambiguities in spoken commands and enable 
more rapid and human-like interactions [51]. Indeed, 
multimodal gaze+voice input has long been recognized as a 
potent combination, starting with seminal work in 1980 by 
Bolt [10]. However, prior gaze-augmented voice agents 
generally require environments to be pre-registered or 
otherwise constrained, and most often employ head-worn or 
fixed sensing infrastructure to capture gaze. This precludes 
true mobility, especially for popular form factors such as 
smartphones. 
In this work, we aimed to develop a practical 
implementation of ad-hoc, real-world gaze location sensing 
for use with mobile voice agents. Critically, our 
implementation is software only, requiring no new hardware 
or modification of the environment. It works in both static 
indoor scenes as well as outdoor streetscapes while walking. 
This is achieved by simultaneously opening the front and 
rear cameras of a smartphone, offering a combined field of 
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view of just over 200 degrees on the latest generation of 
smartphones. The front-facing camera is used to track the 
head in 3D, including its direction vector (i.e., 6DOF). As the 
geometry of the front and back cameras is fixed and known, 
along with all of the lens intrinsics, we can raycast the head 
vector into the 3D world scene as captured by the rear-facing 
camera. 
This allows the user to intuitively define an object or region 
of interest using their head gaze. Voice assistants can then 
use this extra contextual information to make inquiries that 
are more precise and natural. In addition to streetscape 
questions, such as “is this restaurant good?”, WorldGaze can 
also facilitate rapid interactions in density instrumented 
smart environments, including automatically resolving 
otherwise ambiguous actions, such as “go”, “play” and 
“stop.” We also believe WorldGaze could help to socialize 
mobile AR experiences, currently typified by people walking 
down the street looking down at their devices. We believe 
our approach can help people better engage with the world 
and the people around them, while still offering powerful 
digital interactions through voice. 
We started our investigations with a qualitative study that 
helped to ground our design and assess user acceptability. 
With encouraging results, we then moved to development of 
a functional, real-time prototype, constraining ourselves to 
hardware found on commodity smartphones. We conclude 
the paper with a performance evaluation that shows 
WorldGaze can be quick and accurate, highlighting the 
potential of multimodal mobile interactions. 
RELATED WORK 
Tracking a user’s gaze for interactive purposes has been the 
subject of research for many decades. We first position this 
paper with respect to the large multimodal interaction 
literature. We then briefly review the gaze tracking literature, 
focusing on mobile systems, followed by discussion on 
existing mobile approaches for inferring geospatial and 
physical context. Finally, we conclude with systems that 
combine both gaze and voice, which is most relevant to 
WorldGaze. 

Multimodal Interaction 
A wide variety of multimodal interaction techniques have 
been considered that combine two or more input modalities 
to enable more accurate or expressive interactions. For 
example, combining pen and finger input on touchscreens 
has been an area of particular interest, e.g., Cami et al. [12], 
and Hinckley et al. [24]. Researchers have also looked at 
combining touch and gaze for enhanced selection or enabling 
new functionality, e.g., Pfeuffer et al. [36]. Speech combined 
with gestures [11, 37] or handwriting [2] has been used to 
overcome individual drawbacks. Clark et al. [14] offer a 
comprehensive survey on multimodal techniques 
incorporating speech input. WorldGaze contributes to this 
literature, and like most other multimodal techniques, it 
offers unique interactions that move beyond what speech or 
gaze can offer alone.  

Gaze Pointing 
Bolt’s pioneering work (“put that there” [10]) used mid-air 
pointing to select objects at a distance. This paved the way 
for follow-up research which explored the usability of 
multimodal input, including deictic hand gestures [47], mid-
air pointing [31, 32], and eye tracking, such as MAGIC 
pointing [50]. Zhai et al. [50] took advantage of clutching 
mechanisms (e.g., mouse + gaze or hand gesture + gaze) for 
target selection, helping to mitigate the “Midas touch” effect 
inherent in gaze-driven interactions [24]. 

Following Bolt and Zhai’s seminal work, more sophisticated 
approaches for gaze pointing have emerged. For instance, 
Drewes et al. [15] proposed using a stationary eye tracker to 
support mobile phone interactions. Mardanbegi and 
Hansen [30] extend this idea, using gaze-based selection for 
wall displays. More recently, Orbits [16] explored a gaze 
tracking technique based on smooth pursuit coupling, while 
Schweigert et al. [44] investigated gaze direction for 
targeting and mid-air pointing as a selection trigger. This 
prior work illustrates the value and feasibility of gaze as an 
input channel, all of which inspired the direction of our work. 
Geospatial Mobile Interactions 
Knowledge about a user’s physical context is especially 
valuable for computers that are mobile. Armed with such 
information, these devices provide users with more timely 
and contextually relevant information. Technologies like 
GPS and WiFi localization offer coarse location information 
that could identify e.g., which Starbucks the user is standing 
in front of (i.e., city block scale), but they are not precise 
enough to resolve e.g., which exact business the user is 
inquiring about without specifying a name. 

Bluetooth beacons and ultrasonic localization systems are 
more targeted, offering room-scale accuracy (or better), 
which is sufficient to resolve questions with a single 
applicable local target, such as “what is this printer’s 
name?”. However, these techniques fail when there are 
multiple applicable targets (“turn on”), even when a category 
is provided (“what model car is this?” when standing in a 
parking lot). As noted by Schmidt et al. [42] “there is more 
to context than location”. We agree and believe gaze to be 
among the strongest and natural complementary channels. 
Object Context + Voice Interactions 
Glenn et al [20] presented one of the earliest systems 
combining gaze and voice. Follow-up work has focused on 
specific tasks, for example, Koons et al. [27] built a system 
combing speech, gaze, and hand gestures for map 
manipulation, while Acartürk et al. [1] proposed using gaze 
and voice to enable interaction with computers for the 
elderly. Other researchers have explored using voice within 
context-specific situations. For example, Roider et al. [40] 
and Neßelrath et al. [34] used gaze and eye tracking on 
dashboards to enable expressive car-based interactions. 
Regardless of the context, researchers have shown that multi-
modal systems consistently outperform single-modality 
approaches, e.g., Miniotas et al. [33] and Zhang et al. [51]. 



EXPLORATORY STUDY 
To understand the implications of using gaze+voice 
augmented assistants in everyday scenarios, we devised a 
Wizard-of-Oz experiment. This allowed us to gather user 
feedback on the use of WorldGaze against competitor 
techniques, without implementation limitations.  
Setup 
As an exemplary task, we asked participants to retrieve six 
pieces of information (e.g., opening hours, ratings, phone 
numbers) about five restaurants within view on a busy 
commercial street. Participants completed this task three 
times, using one of three randomly ordered (Latin Square) 
METHODS: Touch, Voice, and WorldGaze. In the Touch 
condition, we asked participants to use Google Maps to 
query information (app already open on the smartphone). In 
the Voice condition, we used a Wizard-of-Oz voice assistant 
(triggered by “Hey Siri”) that always returned the correct 
answer. Finally, in the WorldGaze condition, the voice 
assistant similarly returned the correct answer. Gaze was not 
tracked, but the experimenter asked participants to look at 
the restaurant in question while inquiring. For all methods, 
question order was randomized, with the added constraint 
that the same restaurant was never the target twice in a row. 
Procedure 
After welcoming participants, we explained the study, 
answered all open questions, and then asked them to give 
informed consent. We then went through the three conditions 
on the street in Latin Square order. After each condition, we 
asked participants to fill out a System Usability Scale 
(SUS) [11] (10-items on a 5-point Likert scale) and a raw 
NASA TLX questionnaire [22] (6-items on a 21-point Likert 
scale) and a single question on future use desirability (7-
point Likert scale). Lastly, we conducted an exit interview 
capturing general feedback. 

Participants 
We recruited 12 participants (9 male and 3 female) from our 
institution with a mean age of 25.5 years (SD = 3.3). For this 
study, we only recruited participants with at least 
introductory coursework in HCI. The study took roughly 30 
minutes, and participants were compensated $10 for their 
time. 
Quantitative Feedback 
After calculating the SUS score [11] between 0 and 100, we 
ran a Shapiro-Wilk normality test. As p < .003, we 
performed a Friedman test revealing a significant effect of 
METHOD on SUS rating (χ2(2) = 6.000, p = .0498, 𝜂𝜂2 = .75); 
see Figure 2 left. As post-hoc tests, we performed Wilcoxon 
rank sum test with Bonferroni correction. However, the post-
hoc tests did not reveal any significant difference (p > .05). 

After calculating the raw NASA TLX score [22], we ran a 
Shapiro-Wilk normality test. With p < .002, we performed 
an additional Friedman test for raw TLX revealing a 
significant effect of METHOD on raw TLX rating 
(χ2(2) = 7.787, p = .020, 𝜂𝜂2 = .45); see Figure 2 center. For 

post-hoc tests we performed Wilcoxon rank sum test with 
Bonferroni correction and found that Touch had a 
significantly higher task load than Voice (p = .039); all other 
combinations (p > .05). For Future Use we also ran a 
Shapiro-Wilk normality test (p < .001). Thus, we performed 
a third Friedman, which revealed no significant effect of 
METHOD on Future Use (χ2(2) = 1.929, p = .381, 𝜂𝜂2 = .08); 
see Figure 2 right.  

As Shapiro-Wilk normality showed the normal distribution 
was not violated (p > .052), we performed a one-way 
ANOVA, which revealed that there was no significant effect 
of METHOD on Task Completion Time (TCT) (F(2,22) 
= 0.013, p = .987, 𝜂𝜂2 < .01), with Touch (M = 7.9 sec, 
SD = 4.1), Voice (M = 7.9 sec, SD = 4.3), and WorldGaze 
(M = 8.2 sec, SD = 4.9). However, as WorldGaze requires 
less words to be articulated, utterance duration is shorter. 
Qualitative Feedback 
One researcher transcribed the interviews (M = 15min) [9], 
and then two researchers on the team affinity 
diagrammed [21] printed quotes to identify high-level 
themes, which we now summarize: 
Easy and Natural: Most participants found WorldGaze to be 
a natural interaction (P1,2,4,6-9,11). Eleven participants (P1-
7,8-12) articulated that WorldGaze is easy to use, “implicit 
input with [WorldGaze] would be striking” (P9) and “a very 
discreet way to get information” (P8). For example, P3 
said WorldGaze is “providing a more intuitive and real-time 
detailed inquiry” and P4 stated that “gaze is more socially 
acceptable”.  
Useful and Fast: Five participants (P5,7,9,12) expressed that 
“[WorldGaze] would be useful to have” P5. Eight 
participants (P1-3,5-7,10,11) saw utility in the possibility of 
disambiguating between objects and places, for instance, P7 
said “I feel like inputting the gaze will help solve some of the 
accuracy problems that make voice assistants unreliable.” 
Participants also identified that WorldGaze is useful for 
situations where the name of the object/place is unknown 
(P3,5,7,11). Additionally, six participants (P1-3,5,7,8) 
commented on the speed of WorldGaze, noting that touch 
felt slower: “[WorldGaze] is faster - or it feels faster anyway 
- less frustrating” (P2).

  SUS    TLX    Future Use 

Figure 2. Left: System Usability Scale for our three conditions 
(lower is better). Center: raw NASA TLX rating (lower is 
better). Right: Rating of future use desirability (high is better). 



Novelty and Usability: As one would expect with a new 
input modality, several participants stated that they would 
have to get used to WorldGaze before feeling comfortable 
(P2,3,8, 10,11). We also received feedback that WorldGaze 
required the user to hold the phone fairly high (P1,2,8-12). 
Five participants (P3,4,6,8,9) expressed concerns about 
accessibility (“[people with] low vision” P8) and social 
acceptance (“people may think I’m recording them” P4). We 
also received feedback on feasibility, with participants 
stating that WorldGaze may not work for places that are far 
away (P2-4,7,9,11), objects which are too close (P1,6,7), and 
that the latest generation of phones would be needed 
(P1,2,4). 
Use Scenarios: Participants envisioned many uses for 
WorldGaze, including asking questions about products in 
stores or menu items in restaurants (P6,7,9,10,12). 
Interacting with smart home objects, such as controlling the 
TV or lighting, was mentioned by four participants 
(P5,6,7,10). Also mentioned were use cases in museums 
(P4,8), navigation support (P2,9), and for desktop computer 
interaction (P3,5), e.g., MAGIC pointing [50]. 
Enhanced Feedback: Seven participants expressed a desire 
for better feedback in WorldGaze (P1,2,4,5,7,9,10), for 
example, an indicator that WorldGaze had selected the 
correct target (e.g. displaying a map or image of the 
restaurant). Six participants proposed improvements 
(P1,3,7,9,11), including an overlay on the camera view (e.g., 
outline on the place of interest). In cases where the system 
selected the wrong location, participants proposed various 
resolution strategies, including giving multiple options based 
on the likelihood, using mid-air gestures, and a mode where 
the current gaze target was announced out loud. Finally, P8 
mentioned a desire to use WorldGaze in concert with silent 
speech [46] and also conventional touch interaction. 
New Interactions: Six participants (P1,4,6,7,11,12) 
suggested the system could be integrated into smart glasses 
(“the most frictionless option” P11) or added to camera-
equipped smart devices (e.g., Facebook Portal, Google Nest 
Hub). Another feature envisioned was to use WorldGaze to 
rapidly compare multiple objects or places (P2,5,9). Finally, 
participants suggested that WorldGaze could be a proactive 
system (P2,4,8), wherein a virtual assistant knows a user’s 
focus and “could make recommendations” (P3) on the go. 
IMPLEMENTATION 
Our exploratory study gave us confidence that our technique 
would be quick, natural, and appreciated by users. The next 
challenge was figuring out how to create such an interaction 
technique without having to instrument the user or 
environment in any manner, and ideally, use only sensors 
already present in contemporary smartphones. We decided 
on a camera-only approach, taking advantage of recent 
trends in mobile hardware. 

Platform Selection 
At the time of writing, only iOS 13.0 and later permitted front 
and back cameras to be opened simultaneously, and it is for 
this reason that we selected iPhones as the platform for our 
proof-of-concept implementation. That said, this is not an 
innate hardware limitation; Android devices could have 
similar capabilities in the near future. 
Device & Field of View 
We used an iPhone XR for development and testing. This has 
a rear 12MP camera with a 67.3° field of view (FOV) and a 
7MP front-facing camera with a 56.6° FOV. We note this 
FOV is considerably narrower than the most recent 
generation of flagship phones, including the Galaxy S10 
series at 123°, iPhone 11 at 120°, Huawei P30 Pro at 120°, 
Asus ROG at 120°, and OnePlus 7 Pro at 117°. For front-
facing (i.e., “selfie”) cameras, higher-end models often 
feature a FOV of around 90° (e.g., Pixel 3 at 97°, and LG 
V40 at 90°), which we found to be more than sufficient to 
fully capture the head, even at closer ranges, such as when 
reading the screen. This increased FOV trend looks set to 
continue, and over time, one can expect these high-end 
camera features to trickle down to mid-tier phones, 
especially if there were additional driver applications such as 
WorldGaze. 
We also note that with techniques such as visual odometry 
and SLAM [8, 17] – like that employed in Apple’s ARKit – 
an object could still be addressed with gaze even if it is not 
currently seen in the rear camera view. Instead, the gaze 
vector could be projected into a 3D scene model stored in 
memory to much the same effect. 
Head Gaze Ray Casting 
Having selected iOS as our development platform, we could 
also leverage capabilities provided by the ARKit 3 SDK. 
This includes a robust face API offering six-degree-of-
freedom tracking using the front-facing camera. We use the 
forward-facing head vector (GazeVector) to extend a ray out 
from the bridge of the nose, which we then project into the 
scene captured by the rear-facing camera. This vector is used 
in subsequent processes, such as performing hit testing with 
elements in the world (e.g., restaurants or smart home 
devices). On an iPhone XR, this process runs at 30 FPS 
with ~50 ms of latency. 
Object Recognition & Segmentation 
A raycast into a scene denotes an area of interest, but it does 
not immediately provide a well-defined item of interest. 
Some items are large (e.g., restaurant facade), while others 
are small (e.g., bus stop sign). It may be that a user is looking 
at a menu on a restaurant window vs. the restaurant as a 
whole, also suggesting a hierarchy of foci. Thus, a parallel 
process is needed to resolve a user’s true gaze intent, which 
then serves as an input parameter to e.g., voice assistants. 
Most straightforward is to use vision-based object 
recognition systems, such as Yolo [39], Google Vision [19], 
RetinaNet [29], and DenseCap [26], which provide bounding 
boxes. Even tighter semantic segmentation can be achieved 



with pipelines such as SegNet [5] and Mask R-CNN [23], 
which provide object contours. Although default models 
generally provide only generic class names (e.g., “Car”, but 
not “2019 Honda Civic”), they can also be trained to 
recognize specific object if given sufficient data. For 
example, many mobile AR SDKs (e.g., Vuforia [48]) allow 
developers to preregister specific objects and places for later 
recognition, and this is the approach we foresee in a 
commercial implementation of WorldGaze. There could also 
be a cloud-mediated library where e.g., brick and mortar 
businesses and consumer goods manufacturers register their 
storefronts and wares. 
As a proof of concept, we use Apple’s Vision Framework [3] 
for object recognition and tracking. This API allows 
developers to register both 3D objects (e.g., cars, appliances 
and furniture via the ARReferenceObject API), as well as 
planar images (e.g., business logos and street signage via the 
ARReferenceImage API). We chose this over other similar 
packages chiefly for its excellent performance on the iPhone 
XR (hardware accelerated using Apple’s A12 Bionic chip), 
allowing our whole stack to run at camera frame rate. 
For each frame, we rank order all identified targets by 
confidence, using the minimum 3D distance of the gaze ray 
to the centroid of the object, weighted by the size of the 
object. The latter helps improve robustness in the case of 
nested objects. A fully probabilistic approach could also be 
powerful, leveraging frameworks that handle inputs with 
uncertainty [43]. 

Voice Assistant Integration 
The final piece of our full stack implementation is integration 
with a voice agent. For this, we start by using the continuous 
listening feature on iOS combined with speech-to-text [4]. 
More specifically, we listen for “Hey Siri” as a keyword to 
start transcription of a voice query. We then search this text 
string for ambiguous nouns (e.g., “this” and “that place”), 
replacing instances with the name of the object with the 
highest gaze probability (see previous section). We note that 
more advanced NLP methods could handle more complex 
phrasings, but our search and replace approach was sufficient 
as a prototype. In a commercia implementation, the updated 
phrase would be pushed back into the conventional voice 
assistant stack. However, to better control the user 
experience for testing and demonstration, we constrain the 
possible answers using a query-reply lookup table. 

Comparative Approaches 
Voice-only query approaches require users to be very 
explicit in defining objects or places of interest. At the time 
of writing, we found that even when standing directly in front 
of a Starbucks, asking Apple’s Siri “when does Starbucks 
close?” required an additional voice step of confirming the 
Starbucks nearest to the user; see Video Figure. In general, 
geolocation technologies like GPS and WiFi positioning are 
too coarse for selecting individual storefronts, and of course, 
you often wish to inquire about something across the street 
or ahead of you. Indoors, you might wish to specify 

something as small as a thermostat in a dense scene of 
potential target objects. As before, voice is more useful for 
interacting with objects father away, not ones directly in 
front of you, where touch input might be more effective, and 
thus even centimeter indoor location in not a panacea for 
ambiguous voice queries. 

Of course, WorldGaze is not the only option for specifying a 
distant, yet well-defined target without explicit speech. For 
example, instead of looking at a target, one could orient their 
phone towards it, which is how most mobile AR applications 
work today. While certainly more practical, it has the 
downside of having to “live through your phone” and makes 
rapid, ad hoc inquiries harder – one would have to launch the 
pass-through AR app to specify the target with any degree of 
accuracy. Another option is pointing with the hands [10], 
though this generally requires precise motion 
tracking [31, 32] and currently generation phones do not 
capture the hands unless they are fully extended outwards or 
held in front of the head, which is hardly natural. 

Battery Life Implications 
Although WorldGaze could be launched as a standalone 
application, we believe it is more likely for WorldGaze to be 
integrated as a background service that wakes upon a voice 
assistant trigger (e.g., “Hey Siri”). Although opening both 
cameras and performing computer vision processing is 
energy consumptive, the duty cycle would be so low as to not 
significantly impact battery life of today’s smartphones. It 
may even be that only a single frame is needed from both 
cameras, after which they can turn back off (WorldGaze 
startup time is 7 sec). Using bench equipment, we estimated 
power consumption at ~0.1 mWh per inquiry. 

EVALUATION 
We conducted a second study to evaluate the tracking and 
targeting performance of our proof-of-concept WorldGaze 
implementation. 
Setup 
In this study, participants were asked to stand in front of a 
wall at three different distances (DISTANCE: 1m, 2m, and 4m) 
while holding a phone and pointing with head gaze at 15 
different targets (TARGET). The targets where arranged in a 
5×3 grid with a center-to-center spacing of 80cm; Figure 4. 
Each target was registered as a separate object in the phone’s 
WorldGaze database. The order of the three DISTANCE 
conditions was balanced using a Latin Square design, while 
the order of the targets was fully randomized (repeated three 
times each). 

Procedure 
After welcoming participants, we explained the study 
procedure and answered any questions. We then familiarized 
participants with the WorldGaze technique. Importantly, we 
gave no feedback (visual or otherwise) of the gaze ray to 
participants so as to not influence their targeting behavior. 
Gaze targets were announced one at time by the 
experimenter. Participants verbally announced (e.g., “ok”) 
when they were looking at the requested target, and the 



experimenter pressed a space bar on a laptop study interface, 
which recorded the selected object as reported by WorldGaze 
running on the phone, as well as accessory information for 
later analysis like the gaze vector. The next trial began 
automatically. 

Participants 
We recruited 12 participants (9 male, and 3 female) from our 
institution with a mean age of 28.9 years (SD = 5.8). The 
only requirement was that they had no locomotor 
impairment. The study took approximately 20 minutes and 
participants were compensated $10 for their time. 
Results 
In total, participants gaze-selected 1620 targets (12 
participants, 5×3 grid of targets, 3 repeats per target, and 3 
distance conditions). Overall, across all conditions and 
participants, we found a mean tracking error in real-world 
coordinates of 0.71m (SD = 0.47). Note that this result is 
cross-user (i.e., “out of the box” accuracy), with no per-user 
or post hoc global corrections. We first processed the 
tracking data so that the grid aligned from all sessions. In line 
with prior related work, we filtered outlier trials with error 
exceeding mean+3SD [31, 32], which removed 11 targets. 
The mean error was lower when standing close to the wall, 
and highest when farther away.  

A Shapiro-Wilk normality test showed that the Error is not 
normally distributed (p < .038), thus, we performed a three-
way ART RM-ANOVA [49]. The analyses revealed a 
statistically significant influence of DISTANCE on Error 
(F(2,483.0) = 19.6, p < .001); see Figure 3 left. When 
breaking error out by HORIZONTAL and VERTICAL accuracy, 
we find statistically significant impact on Error (F(4,483.0) 
= 50.8, p<.001; F(2,483.0) = 521.5, p < .001; respectively); 
see Figure 3 center and right. Further we found that all two-
way interaction effects are significant (p < .002), but none of 
the three-way interactions (p = .755). 

The center column was the least error-prone (Figure 3 center 
and right), perhaps because it was always closest and it is 
easier to look straight ahead. Our results also show that 
targets situated higher are more precise, which is 
advantageous since most foci of interest in outdoor scenes 
are located at eye height or above (e.g., signage). Finally, 
Figure 4 shows an overall correlation between target 
placement and error, which is in line with errors shown for 
traditional mid-air pointing using head-finger raycasting 
(c.f., Mayer et al. [31, 32]). Overall, we are confident that our 
current implementation could be used to select small but 
sparse objects, such as a lamp on a table, and is certainly 
accurate for most outdoor uses. 

EXAMPLE USES 
We now briefly describe example interactions in three use 
domains where we believe WorldGaze could be particularly 
useful: streetscapes, smart homes/offices, and retail. Please 
also see our Video Figure for a real-time demonstration of 
our implementation. 

Streetscapes 
It is not uncommon to see people walking down the street 
looking at their smartphones; see Figure 1, left. With 
sufficiently wide-angle lenses, WorldKit could allow for 
natural, rapid, and targeted voice inquiries. For example, a 
user could look at a store front and ask, “when does this 
open?” WorldGaze fills in the ambiguous “this” with the 
target business, allowing the voice agent to reply 
intelligently. Similarly, a user could ask “what is the rating 
for this place” or even “make me a reservation for 2 at 7pm”; 
see Figure 5. 

Retail 
Retail settings are also ripe for augmentation, as they are full 
of a great variety of objects that customers might wish to 
know more information about; see Figure 6. For example, a 

Figure 5. WorldGaze, in concert with a voice agent, could 
enable much more natural and rapid retrieval of information 
about e.g., businesses while walking down a street. 

Figure 4. Mean gaze error for the 15 targets at three distances. 
Error is highest in the lower right corner, where participants 
had to look over their right arm to see the target. 

 Distance    Horizontal   Vertical 

Figure 3. Left: error vs. user distance from wall. Center: error 
with respect to target horizontal placement. Right: error based 
on target vertical placement. 



customer could ask, “does this come in any other colors?” in 
regard to a sofa they are evaluating. Likewise, they could 
also say “add this to my wishlist”. It would also be trivial to 
extend WorldGaze to handle multiple sequential targets, 
allowing for comments such as “what is the price difference 
between this… and this.” 
Smart Homes and Offices 
Finally, WorldGaze could also facilitate rapid interactions in 
density instrumented smart environments, automatically 
resolving otherwise ambiguous verbs, such as play, go, and 
stop; see Figure 7. For example, a user could say “on” to 
lights or a TV, or “down” to a TV or thermostat. WorldGaze 
offers the necessary context to resolve these ambiguities and 
trigger the right command; see Video Figure.  
LIMITATIONS & FUTURE WORK 
As noted previously, our current WorldGaze implementation 
is constrained by the rear camera’s field of view – wider-
angle lenses mean more of the world is gaze addressable. 
Fortunately, the current trend in smartphones is to include 
wide angle lenses, with some models exceeding 120°. While 
this falls short of human vision, with roughly a 135° 
horizontal FOV per eye [18], it is sufficient to capture the 
majority of a scene in front of a user. Overall, we foresee this 
FOV gap diminishing overtime, especially if capabilities 
such as WorldGaze are an additional driving factor. 
That said, we note that a limited FOV might be partially 
overcome through future integration of techniques like visual 
odometry and SLAM [8, 17], which can iteratively build a 
3D world scene in memory. As the smartphone’s 3D position 
in the scene is known, along with the live head vector, user 
could gaze at previously captured objects with no difference 
in the interaction. 
We also note that we started our implementation efforts 
utilizing both eye gaze and head orientation, which would 
provide a fine-grained gaze vector perfect for WorldGaze. 
We tested numerous state-of-the-art algorithms [6, 28, 35, 
52], but found accuracy to be severely lacking for our 
particular use case. WorldGaze operates at longer ranges 

than most screen-based gaze interactions, which exacerbates 
error; e.g., ±15° angular error equates to meter-scale 
inaccuracies when looking at objects four meters away. 
Instead, we decided to build our proof-of-concept 
implementation on head gaze alone, which is more stable and 
accurate (chiefly because there are plenty of facial landmarks 
onto which to fit a 3D head model). Of course, aiming with 
one’s head is less natural than gazing with the eyes, and so 
we are hopeful that eye tracking sensors and algorithms 
capable of running on mobile devices will continue to 
improve. 

CONCLUSION 
We have presented our work on WorldGaze, an interaction 
technique leveraging front and rear smartphone cameras that 
allows users to denote an object or region of interest with 
their head direction. With computer-vision-based object 
recognition, we can identify what e.g., business or IoT device 
a user is looking at, which we can pass as extra physical 
context to voice agents like Siri and Alexa, making them 
considerably more natural and contextually aware. We show 
through qualitative and quantitative studies that such a 
feature would be welcomed by users and is accurate to 
around one meter in the world. Finally, as remarked by our 
participants, WorldGaze could prove valuable in form 
factors beyond smartphones, such as smart glasses, which we 
hope to explore in the future. 
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