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Figure 1: Today’s capacitive touchscreen are low resolution, precluding recognition of e.g., passive tangibles (1). By capturing 
several raw frames (2) and applying super-resolution techniques, resolution can be dramatically improved (3,4), enabling new 
interactive experiences (5). 

ABSTRACT 
Capacitive touchscreens are near-ubiquitous in today’s touch-
driven devices, such as smartphones and tablets. By using rows and 
columns of electrodes, specialized touch controllers are able to cap-
ture a 2D image of capacitance at the surface of a screen. For over 
a decade, capacitive “pixels" have been around 4 millimeters in size 
– a surprisingly low resolution that precludes a wide range of inter-
esting applications. In this paper, we show how super-resolution 
techniques, long used in felds such as biology and astronomy, can 
be applied to capacitive touchscreen data. By integrating data from 
many frames, our software-only process is able to resolve geomet-

ric details fner than the original sensor resolution. This opens the 
door to passive tangibles with higher-density fducials and also 
recognition of every-day metal objects, such as keys and coins. We 
built several applications to illustrate the potential of our approach 
and report the fndings of a multipart evaluation. 

CCS CONCEPTS 
• Human-centered computing → Touch screens. 
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1 INTRODUCTION 
Touch input is the dominant mode of interaction on mobile com-

puters and is increasingly common in laptops, self-service kiosks, 
domestic appliances, and cars. The most prevalent touchscreen 
technology used today is projective-capacitive [14, 53], which uses 
a row-column arrangement of sensing electrodes (typically made 
from transparent conductive materials, such as ITO, sandwiched be-
tween cover glass and a display). A specialized sensing IC measures 
the coupling capacitance not only at a single point (e.g., [38, 68]), 
but at each row-column intersection [9, 42], building a 2D signal 
often called a “capacitive image" in the literature [22, 30, 60]. Ca-
pacitive objects (e.g., fngers and metal items) touching the screen 
appear as “blobs" in the image, which can be tracked over time by 
standard computer vision algorithms, enabling inputs such as taps 
and swipes. 

As touchscreens are primarily designed to capture fnger input, 
the pitch of the capacitive matrix is generally sized such that fnger-
tips overlap at least two pixels horizontally and vertically, as this 
permits a fairly accurate sub-capacitive-pixel interpolation of the 
true touch centroid. For this reason, capacitive touchscreen sensor 
resolution has not changed much over time or device category: 
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e.g., LG ’G’ smartwatch (3.5mm pitch) [60], Nexus 5 smartphone 
(4.1mm pitch) [31], Samsung S4 smartphone (3.9mm pitch) [60], 
Samsung Galaxy Tab S2 tablet (4.0mm pitch), and Microsoft 55′′ 

Surface touchscreen (∼5.9mm pitch) [59]. This coarse resolution 
immediately precludes many interesting applications. Moreover, 
increasing capacitive touchscreen sensor resolution is not trivial, 
as adding rows and columns incurs a quadratic cost in terms of 
the number of intersections to sense, increasing latency when the 
current trend is towards more responsive touchscreens. Thus, if 
we wish to have higher-resolution capacitive image data, we must 
turn to other approaches. 

In this paper, we show how super-resolution techniques – long 
used in felds such as biology and astronomy – can be applied to 
capacitive images. The fundamental operation begins by capturing 
a series of images at slightly diferent perspectives or ofsets. In the 
case of imaging a celestial body, this might be diferent perspectives 
as the Earth orbits the Sun. In our case, it is translations of an object 
on a touchscreen’s surface that quantizes the object along many 
diferent capacitive pixel boundaries. Although single frames inher-
ently contain no details smaller than a pixel, sub-pixel details can 
now be resolved when fused together through super-resolution. For-
tunately, there is often sufcient sub-pixel movement created when 
a user naturally places an object down onto a touch surface. How-
ever, this does come at the cost of latency, as more than one frame is 
needed. For this reason, we envision a single-frame touch-tracking 
pipeline and multi-frame super-resolution pipeline running in par-
allel, maintaining existing touch input responsiveness while also 
opening new interactive opportunities. 

Figure 1 ofers an example result: a 4×4mm AprilTag fducial [54] 
made from metal foil is unrecoverable with the native capacitive 
image. However, with just a few frames captured during translation 
of the tangible (perhaps when frst placed down onto the tablet, or 
when the fgurine is moved), super-resolution can reveal the tag’s 
fne details, permitting recognition with a standard AprilTag reader. 
Similar results are achieved for human inputs, such as palm prints 
(see Figure 2) and everyday conductive objects, such as coins and 
keys; see Figure 4. Importantly, our software could be made to run 
on nearly all smartphones, unlocking new interactive capabilities 
without any changes to the hardware. 

2 RELATED WORK 
Our work draws on several disparate literatures, most notably super-
resolution techniques, capacitive touchscreen, and tangibles, which 
we now review. 

2.1 Super-Resolution Techniques 
Super-resolution techniques have been developed and applied in 
many domains, including traditional photography [58], astron-
omy [23, 41], CCTV footage [56], medical imaging [15], and mi-

croscopy [19]. The universal goal across all these domains is to 
enhance resolution of images beyond that of the native sensor. Tra-
ditional geometric approaches, such as [10, 11, 17], rely on aligning 
and stacking multiple frames to mitigate sensor noise and resolve 
fner-grained details. Other super-resolution techniques use time 
varying information, such as the transient fuorescence of molecules 
under an optical microscope [2, 19]. 

By applying domain knowledge (e.g., the approximate 3D geome-

try of human faces [56], approximate fnger shape for superior touch 
centroid prediction [64]), super-resolution output can be further im-

proved. There are also many deep-learning-based super-resolution 
approaches, which learn to infll fne-grained geometric detail from 
a training corpus of domain-specifc images [8, 9, 63, 65, 68]. Such a 
deep learning approach is not yet feasible for touchscreen capacitive 
images as there are no large corpora for training, nor do we have 
sufcient starting resolution to perform the downsample-upsample-

and-compare-style training procedure most often employed in these 
papers. The latter uses multi-megapixel photos, while the capaci-
tive images on our test tablet is a mere 49 × 37 pixels (<0.002 of a 
megapixel). For this reason, we utilize a purely geometric approach. 
Finally, super-resolution imaging has fundamental limits, and there 
is considerable theoretical research in this space [1, 35]. 

2.2 Touchscreen “Capacitive Images" 
Grosse-Puppendahl et al. [16] provides an excellent review of uses 
of capacitive sensing in Human-Computer interaction (HCI). More 
relevant to the present work are eforts that specifcally leveraged 
the capacitive image. For example, Kumar et al. [30] used the data 
to improve touch precision over the algorithms run on the touch 
controller. The capacitive image has also been used to enable new 
interactive modalities, including estimating a fnger’s 3D orienta-
tion on a screen [36, 60], and even recognizing digits (e.g., thumb, 
pinky) [33]. Holz et al. [22] used the capacitive image to recognize 
users’ ears, and later, Guo et al. [18] showed handprints could also 
be used to diferentiate users in small groups. 

While we did not reimplement any of these systems, we believe 
our super-resolution approach would almost certainly improve the 
accuracy of these prior systems. For instance, Guo et al. [18] used 
raw capacitive images of palm prints for biometrics (example “raw 
image" shown in Figure 2), which are greatly improved with super 
resolution (Figure 2, “super-resolution output"); Not only are charac-
teristic contours revealed, but more accurate measurements of e.g., 
fnger lengths are also possible. Note that interpolation/smoothing 
is commonly applied to raw capacitive images, but does not reveal 
any new information or the same level of geometric details (Figure 
2 ofer interpolated examples for reference). 

2.3 Tangibles 
Although tangibles (physical objects that can be manipulated by 
users on a screen and participate in the interactive experience) are 
not the focus of our innovation, they are nonetheless enabled by our 
approach in a higher-density manner than previously demonstrated 
on capacitive touchscreens. For this reason, it is worth briefy re-
viewing tangibles in general and prior capacitive tangible systems 
more specifcally. 

Many of the very earliest explorations of touch screens and “sur-
face computing" incorporated tangibles; e.g., [6, 13, 25, 39, 48, 49]. 
In the 2000s, a wide range of “multi-touch" research systems were 
developed [7, 20], and in 2007, Microsoft launched a commercial 
“Surface" computer (later rebranded PixelSense) [37]. Most of these 
systems used cameras operating behind a defuse screen, able to 
detect user touches, and in many cases recognize tangibles, either 
through visual markers (e.g., [27]) or object contours (e.g., [57]). 



However, by the end of the decade, camera-based touch tables 
were largely displaced by capacitive sensing technologies, ofering 
thinner form factors. With only a low-resolution capacitive ma-

trix for sensing, libraries of tangibles became challenging, if not 
impossible to support. Researchers have explored several ways to 
(re)enable tangibles on standard capacitive touchscreens, includ-
ing active battery-powered tags [40, 51, 52], low-density passive 
capacitive fducials [5, 29, 34, 44, 51, 52], and contour recognition 
[50, 59]. Our super-resolution approach could immediately be used 
to improve the latter two categories. 
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Figure 2: The left-most image is a reference photo of a user’s handprint. Next are the three versions of the handprint as captured 
by a touchscreen: a raw capacitive image, an interpolated capacitive image, and a super-resolved capacitive image. Two areas 
are highlighted with white dashes; zoomed-in versions are shown far right (order is raw, interpolated, and super-resolved. 
Ring Finger is ordered left to right and Palm is top to bottom). 

3 IMPLEMENTATION 
As a proof-of-concept device on which we implemented our capac-
itive touchscreen super-resolution pipeline, we selected a Samsung 
Galaxy Tab S2 tablet. The 9.1′′ touchscreen on this device captures a 
49 × 37 capacitive image (6.33PPI or 4.02mm pixels). As noted in our 
introduction, this capacitive pixel size is roughly average among 
devices and serves as a good exemplar. Commercial devices rarely 
expose the capacitive image via a public API, and so we deployed 
a custom kernel driver to directly communicate with the Synap-
tics touch controller (cf. Le et al. [32]). Transmitting over I2C , our 
software receives capacitive images at ∼16.2FPS. We note that our 
implementation is not device, frame rate, or resolution dependent. 
Indeed, pretty much every capacitive touchscreen device made in 
the last decade could run our software with the appropriate driver 
to interface with the touchscreen (or our pipeline could run on the 
touch controller itself). 

First, we identify all blobs by fnding the contours [46] on a 
thresholded version of the capacitive image. This threshold was 
calibrated per input category (e.g., keys, coins, fducials) to produce 
the best output. We track blobs over time using a Euclidean-distance 
centroid matching algorithm (see e.g., [28, 43]) tracking methods 
e.g. [3, 26, 66] or even deep-learning tracking approaches, e.g., [21]. 
Therefore, each tracked blob is an ever-enlarging sequence of N 
low-resolution frames {Yi }N 

=1
. Our algorithm, heavily based on Xu i

et al. [62], takes these sequences of low-resolution frames as input, 
which are derived from a latent high-resolution image X of the 
tracked object. The generation process of {Yi }N 

=1 can be modeled i 

as: 
Yi = д(fAi (X )) + n, (1) 

where the latent image X is frst transformed by a motion model 
fAi and then downsampled by the sampling function д (i.e., the 
low-resolution touchscreen). The motion model fAi is defned by a 
Euclidean matrix Ai accounting for both translation and rotation. 
n represents gaussian noise. 

With the above formulation, we can solve the multi-frame super-
resolution problem in a maximum-a-posteriori (MAP) framework 
[27, 62], which leads to the following optimization problem: 

 

NÕ 

2

min Yi − д(fAi (X )) + λp(X ) (2)

X i=1 

where the frst term is derived from the likelihood of the low-
resolution observations and ensures the data fdelity of the estima-

tion. p(X ) is the prior term describing the sparsity of the output 
image. Similar to Xu et al. [62], we use the ℓ0 gradient prior as p(X )
to encourage clear shape and sharp edges in the generated results. 
Due to the high-complexity and non-convexity of Equation (2), we 
split it into two simpler sub-problems to approximate the original 
problem: ÕN  
 


min 
 2

Yi − д(f ′( ))

X ′

Ai X  , (3)

i=1 

and 

i=1 

ÕN  
 

min 
X  X ′ 
2− + λp(X ). (4)

X 

The frst sub-problem Equation (3) focuses on the data fdelity term, 
which leads to an intermediate result X ′ that is compatible with the 
observations {Yi }N 

=1
. The second sub-problem Equation (4) ensures i

the fnal solution not only being close to X ′, but also possessing 
the sparsity modeled by p(X ). 

To solve Equation (3), we use bicubic upsampling [24] as the 
inverse-downsampling operation д−1. We select a seed frame Ys by 
ftting a bounding rectangle [47] to all images {Yi }N 

=1
, and Ys is the i

image with the smallest area. We then use the ECC algorithm [10] 
to estimate each transformation Ai between the upsampled images 
д−1(Ys ) and д−1(Yi ). The ECC algorithm [10] can account for both 
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translation and rotation, while other geometric approaches such 
as [11, 17] only consider translation and are not suitable for objects 
that rotate on the screen. With д−1 

and the estimated {Ai }N 
=1
, the i

solution for Equation (3) can be given by: Õ
1 N 

f −1(д−1(Yi )), (5)AiN 
i=1 

where we essentially take the mean of the per-frame estimates to 
aggregate multi-frame information. For the second sub-problem 
Equation (4), since it has the same form as the ℓ0 flter [61, 62], we 
solve it similarly with the half-quadratic splitting scheme [55]. 

Finally, after receiving the super-resolved capacitive image, we 
can more faithfully estimate the shape [45] and size [12, 47] of 
objects, and use any contour matching algorithms to recognize 
objects [4], such as keys, hands, and fngers. For better human 
visual perception, a deblur [14] can be applied to the super-resolved 
capacitive image. 

4 EXAMPLE USES 
Capacitive touchscreens augmented with super resolution could 
enhance both existing interactions and unlock entirely new expe-
riences. To illustrate the breadth of potential uses, we developed 
pairs of demonstration applications across three input categories: 
tangibles, everyday objects, and users. We now briefy describe 
these apps; please also see Video Figure. 

4.1 Tangibles 
As discussed in Related Work, tangibles – which were previously 
common on camera-based touch surfaces – have almost disap-
peared due to lack of support on today’s capacitive touchscreens. 
With super resolution, we show that large libraries of low-cost 
passive tangibles are possible again, on standard capacitive touch-
screens. Specifcally, we used metal foil, which could be inexpen-
sively stamped onto solid or even disposable paper tangibles. 

As a proof-of-concept, we built two games. The frst is a table-
top fantasy game, with plastic hero fgurines and enemy tangibles 
placed into a virtual dungeon, see Figure 1. For recognition, we 
used 16h5 AprilTags [54] 36 × 36mm in size (Figure 3A). In order to 

receive enough unique frames to achieve super-resolution, charac-
ter tangibles are translated on the screen’s surface as they explore 
and fght. For our second example app utilizing tangibles, we aug-
mented paper Pokémon cards with foil 36h11 AprilTags, 64 × 64mm 
in size (Figure 3A and Figure 12 bottom row). The app recognizes 
the Pokémon once the card is placed onto the screen and slid into 
a designated spot (Figure 3B). In both applications, once an ID is 
established, it stays as metadata associated with the touch blob 
until the tangible is lifted from the screen. 

Figure 3: AprilTag (36h11, feature size of 8mm) made of 
metal foil attached to a Pokémon card (A), which can be rec-
ognized by a companion app (B). 

Figure 4: Super resolution can also be used to recognize ev-
eryday metal objects, such as coins (A) and keys (B). 

4.2 Everyday Objects 
In addition to special-purpose tangibles, described in the previous 
section, it could also be valuable for touchscreen devices to recog-
nize and interact with unmodifed everyday objects. In order to be 
sensed by the capacitive touchscreen, these objects must be made 
of a conductive material, such as metal or a carbon-loaded plastic. 

To illustrate this possibility, we created a pair of similar applica-
tions, one that recognizes coins (Figure 4A) and another for keys 
(Figure 4B). The former could be part of educational software, teach-
ing children to recognize diferent monetary values, while the latter 
could be a useful assistive feature. 

Figure 5: A super-resolution handprint scanner that could 
be used for user identifcation or authentication. 
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4.3 Users 
Finally, touchscreens with super resolution could also be used to 
capture new dimensions of user input. For instance, using the shape 
and size of fnger blobs in the capacitive touch image, Le et al. [33] 
demonstrated fnger identifcation, while Mayer et al. [36] and 
Xiao et al. [60] estimated fnger pitch and yaw. Without doubt, the 
accuracy of these prior systems could be boosted with the enhanced 
resolution of fngertips aforded by super resolution (see example 
super-resolution fngertips in Figure 15). Other prior work has used 
capacitive images to capture the shape of the ear [22] and palm [18] 
for identifcation and authentication, both of which could beneft 
from super resolution; see palm print example in Figures 2 and 5. 

5 DATA COLLECTION 
The major challenge in evaluating the quality of capacitive 
super-resolution output (in contrast to photography) is that high-
resolution ground truth images do not exist. Instead, we use the 
real-world geometry of objects (measured with calipers) for evalua-
tion. 

As a very coarse grid of pixels, the impact of touchscreen quan-
tization can vary dramatically depending on an object’s position 
and orientation. Figure 6 illustrates the efect of quantization on a 
fne-grained feature at the limit of touchscreen sensor resolution 
(4mm). Figure 7 ofers an example of how this efect manifests at 
object-scale. To investigate how the position and orientation of 
objects impacts the output quality, we captured data using a se-
ries of Movements with and without Rotation. More specifcally, 
our Movements included left-right, up-down, circle, fgure-eight, 
square, and random paths. We captured Rotation conditions for 
all non-round objects. For handprints, we rotated only as far as 
the touchscreen size would permit without any part of the hand 
leaving the screen. 

5.1 Apparatus 
For data collection, we use our aforementioned Samsung Galaxy Tab 
S2 tablet lying fat on a table. We prepared test sets for eight object 
Types, spanning diferent uses. To measure geometric accuracy, 

we use: metal circles (diameter = 2, 4, 6, and 8mm), metal squares 
(side length = 2, 4, 6, and 8mm), and US coins (penny 19.05mm, 
nickel 21.21mm, dime 17.91mm, quarter 24.3mm). To investigate 
complex structured shapes, we made four low-density fducials 
(feature diameter = 3, 4, 6, and 8mm) inspired by Yu et al. [67], and 
AprilTags (16h5 and 36h11 standards). Finally, to subjectively assess 
quality in resolving a complex object’s shape, we used four keys, 
ten fngers, and two hands. 

Width [mm] Width [mm]

Figure 6: Signal of a 4 × 4mm square in the capacitive image 
when positioned on or between capacitive pixels, as well as 
aligned vs. rotated 45◦ . 

Figure 7: The same fducial tag quantized at diferent trans-
lations and rotations on the screen. These are from the same 
frame sequence as the tag in Figure 12 (top row), and illus-
trates quality variance and the important of selecting a good 
seed frame. 

5.2 Procedure 
For each object set Type, we recorded capacitive image data while 
systematically varying our independent variables (Movements and 
Rotation) in a nested design as rotation was not possible or needed 
in all combinations. For each of the 372 conditions, we recorded 
30 seconds of data (at 16.2 FPS = ∼500 samples). Additionally, we 
recorded 2 minutes of 9 diferent 36h11 AprilTags for the recog-
nition evaluation. Thus, in total, we captured around 194K image 
frames. All parameters, including thresholds for sizing, were fxed 
before the study and applied uniformly to all test inputs. 

5.3 Open Dataset 
To bootstrap research in this area, and ofer a benchmark for future 
evaluations, we have released all of our collected capacitive im-

age data, which can be downloaded at https://github.com/FIGLAB/ 
Super-Resolution-Dataset.git. 

6 EVALUATION 
To assess the geometric accuracy of our super-resolution pipeline, 
we used the data we captured for metal circles, metal squares, and 
US coins (4 Sizes each). These all have known, real-world sizes, 
from which we can compute the error. For fducials, we test how 
well an of-the-shelf AprilTag recognizer [54] correct detects our 
super-resolved output. 

6.1 Seed Selection 
Our frst analysis step was to determine how much variance in 
estimated size was generated by diferent seed images of an object, 
to which all other frames are aligned. For this analysis, we simply 
try all ∼500 frames as seeds and look at the variance in output 
size. We found an average size variation of 0.41mm (SD = 0.45) 
across all tested objects, see Figure 8. The only unusual result was 
the US dime (17.91mm diameter), with an average size variation of 

https://github.com/FIGLAB/Super-Resolution-Dataset.git
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1.44mm across seed images; see Figure 8 left-most green bar. Thus, 
to achieve the very best results, we suggest adding a seed image 
selection stage before attempting super resolution. As noted in 
our Implementation section, we ft a bounding box to all available 
frames in a blob’s time series and use the frame with the smallest 
bounding box as the seed image. We found this to be a simple, but 
reliable metric for good capacitive image pixel alignment (i.e., not 
unnecessarily crossing pixel boundaries). 
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Figure 10: Geometric accuracy (normalized by object size) 
for all of our test circles, squares and coins (four sizes each). 
Square is additionally broken out by data with and without 
rotation (not applicable for our round objects). 

Figure 8: Average variance in estimated output size when try-
ing all frames as seeds. 

6.2 Number of Frames vs. Quality 
As our algorithm works with any sequence length of low-resolution 
input frames, we also wished to investigate how many frames are 
sufcient to generate a high-quality super-resolved output. For 
this, we ran a post hoc study, giving our pipeline diferent input 
sequence lengths, simulating diferent lengths of time, and using 
object size as our evaluation metric. 

Figure 9 shows the accuracy over time for our four sizes of 
circles and squares. We found that quality converges quickly and 
that best quality is achieved within 35 to 45 images. This equates 
to ∼0.6 seconds of data at the touch controller’s native 60 FPS (or 
∼2.5 seconds of data with our prototype’s 16.2 FPS capture rate). 
This latency may be acceptable for recognition of e.g., a tangible 
placed onto the screen, but would be unacceptable for conventional 
touch input. Thus, as noted previously, we envision a single-frame 

touch tracking pipeline and multi-frame super resolution pipeline 
running in parallel, supporting diferent interactive needs. For all 
subsequent analyses, we only use frames 0−36 for super-resolution. 

Figure 9: Geometric accuracy (normalized by object size) 
when running super-resolution on diferent input frame se-
quence lengths (i.e., simulating time). 

6.3 Accuracy Across Size and Rotation 
Overall, we found that our super-resolution pipeline was able to 
resolve the size of objects to within 1.3mm (SD = 1.2). Figure 
10 provides a full breakdown of these results. We note that all of 
our 2mm test objects were wildly inaccurate, showing the limits 
of what super-resolution can recover. If we exclude these three 
objects, mean size error is 0.8mm (SD = 0.6), or 12.5% (SD = 15.1) 
when normalized by object size. 

For the squares, we performed a two-way Analysis of Variance 
(ANOVA), which revealed that there was a signifcant efect of Size 
on Accuracy (F (3, 37) = 543.011, p < .001, η2 = .978). However, 
there was no signifcant efect of Rotation nor an interaction efect 
(F (1, 37) = 0.085, p > .772, η2 < .003; (F (3, 37) = 0.130, p > .941, 
η2 < .011, respectively). As Rotation has no efect on accuracy 
(see also square results in Figure 10), it suggests that our super-
resolution implementation can properly handle object rotation and 
overcome the problems illustrated in Figures 6 and 7. 

As we could not reveal an efect of Rotation for the squares, 
we combined the squares and circles and ran a one-way ANCOVA 
to see if there is a general efect of Size on accuracy with Type as a 
covariate. The ANCOVA revealed a statistically signifcant efect 
of Size on accuracy (F (3, 4) = 309.311, p < .001, η2 = .995). We 
performed pairwise post hoc tests and found all p < .001 besides 
6mm vs 8mm (p = .200). Further, we performed a one-way ANOVA 
with the four coins, confrming that larger elements get estimated 
more precisely as there was no statistically signifcant diference 
(F (3, 20) = 2.591, p > .081, η2 < .280). This is not surprising 
as larger objects do cover more pixels; thus, more information is 
available to perform super-resolution. 

6.4 Fiducials 
To see how capacitive touchscreen super resolution works with 
complex structured patterns, we chose to use fducial markers, 
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which could be used to support libraries of tangibles. We tested two 
designs: low-density fducial markers (similar to TUIC [67]) and 
standard AprilTags [54]. 

Our frst fducial set was inspired by those used in TUIC [67] – a 
3 × 3 grid of circular metal pads (one for each bit). We created four 
diferent tags – 3, 4, 6, and 8mm – which denote both the size of 
pads and space between the pads; see Figure 11 for an example. As 
we found in our evaluation, pad size/spacing of 6 and 8mm were 
easily resolved. Tags of 4mm size/spacing were generally able to be 
recognized (Figure 11, bottom row), but 3mm tags almost always 
failed (Figure 11, top row). As a point of reference, our 3 × 3 tag 
with 4mm pads was 20 × 20mm (44mm2 

per bit), while TUIC’s [67] 
5 × 5-pad tag was 50 × 50mm (100mm2 

per bit). 
Our second fducial set consists of standard AprilTags [54] made 

of aluminum foil. These can be recognized by an unmodifed April-
Tag reader. We created 64 × 64mm tags using the 36h11 AprilTags 
format (36-bit raw payload; 587 unique IDs with error correction). 
The bottom row of Figure 12 shows an example tag at its various 
processing stages. We also created several smaller 16h5 AprilTags 

for testing and found that 24 × 24mm tags worked well (Figure 12, 
top row; 36mm2 

per bit). These are small enough to be placed under, 
for example, chess pieces and other small tangibles, see Figure 1. 

To evaluate recognition accuracy, we tested three 36h11 AprilT-
ags (ID 2, 3, and 4) in three diferent sizes (feature sizes of 4, 6, and 
8mm). We recorded capacitive data from all nine fducial markers 
for two minutes each, totaling around 16k samples. For the baseline, 
we normalized and thresholded the image to help the recognition. 
When using the raw capacitive image, fducial recognition was 
4.2%, 76.5% and 82.5% accurate for the AprilTags with 4, 6, and 
8mm features, respectively. With super-resolution, recognition ac-
curacy jumps to 66.2%, 99.0% and 98.8%, respectively. A related 
t-test (t(18) = −3.973, p < .005) showed that our super-resolution 
method (M = 87.9% SD = 32.6%) signifcantly outperforms the 
baseline (M = 54.2% SD = 49.8). 
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Figure 11: Examples of our 3 × 3 TUIC-inspired fducials; top 
row uses pads 3mm in diameter, while the bottom row uses 
4mm pads. Left: photo reference. Center: best seed image. 
Right: super-resolved fducial. 
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Figure 13: Recognition accuracy of capacitive AprilTags 
(36h11) with features sizes of 4, 6, and 8mm, across 3137 
instances using capacitive images (baseline) and super-
resolved output. 
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Figure 12: Examples of a 24 × 24mm 16h5 AprilTag (top row) 
and 64 × 64mm 36h11 AprilTag (bottom row) at diferent pro-
cessing stages. Figure 14: Four keys at diferent stages of processing. 

7 OTHER POTENTIAL USES 
We also captured data for four door keys as another example class 
of complex objects (Figure 14). We did not perform any quantitative 
analysis; however, we prototyped a demo use-case app, see Figure 
14. Note this would not work for all key types, such as dimple keys. 
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Fiducials are a good exemplar of a man-made, geometrically-

complex input. As a compliment to this data, we also captured 
human input examples, in the form of fngers and hands, to study 
natural shapes. We did not perform any formal experimentation on 
this data, as biometric analyses are a specialized domain beyond the 
scope of our investigations. However, we did run all data through 
our pipeline, with example output shown in Figures 2 and 15. 
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Figure 15: Low resolution input (seed image) and super-
resolution output of fve example fngertips. 

8 LIMITATIONS 
It is important to note that our method would not impact the latency 
of conventional touch events (e.g., pressing a close button, typing 
on a soft keyboard), as we envision our super-resolution pipeline 
running in parallel with standard single-frame touch pipelines. Our 
method’s inherent need for many capacitive image frames does 
mean it operates with higher latency. Fortunately, input events such 
as placing a tangible down onto a screen or scanning one’s palm 
for identifcation are much less latency-sensitive than traditional 
fnger touch events. Nonetheless, thoughtful application of when 
to leverage super-resolved touchscreen input will be required to 
minimize this limitation. 

The low resolution of capacitive touchscreens is a second chal-
lenge. These commodity components are value-engineered to be 
good at capturing fngers, and little else, setting a lower bound 
capacitive pixel size of around 4mm. This pitch ensures fngers are 
seen by at least a few pixels, permitting good interpolation of the 
touch centroid (e.g., [64]) but is very poor at capturing any geomet-

ric detail. A severe consequence of this low sensing resolution is 
very coarse alignment and stacking of object frames, which afects 
all downstream processing, reducing the quality of super-resolved 
output. This limitation is most severe for smaller objects, where 
there are fewer pixels and few unique geometric details on which to 
align frames (e.g., coins, fnger-tips). For larger and more complex 
items (e.g., fducials, handprints), the efect is lessened. 

A third limitation of our approach is the need for objects (e.g., 
fngers, tangibles) to be translated across the surface of the screen. 
This is the only way to quantize the object at a variety of alignments, 
which allows super resolution to resolve sub-pixel details. However, 
as we noted above, the quality follows a logarithmic trend with 
respect to the number of frames captured. In our experience, we 
found that acceptable quality (e.g., correct AprilTag recognition) 
was typically achieved within 10 frames, or roughly half a second 
(see also Video Figure for real-time examples of this efect). This 

means, in practice, objects have to be translated for at least a sub-
pixel distance over the screen (i.e., ∼4mm). In fact, movements 
smaller than a capacitive pixel are better for the super-resolution 
process as the quantization pattern repeats every pixel; and thus, 
adds very little to no information. Nonetheless, some movement is 
necessary, and it means we cannot apply super-resolution to e.g., 
fnger taps or tangibles placed “perfectly" down onto the screen 
(without any movement or jitter). 

Finally, our proof-of-concept implementation runs on a 2017 
MacBook Pro and is computationally taxing even on this hardware. 
Thus, future work remains to build a self-contained smartphone 
version. That said, we implemented most of our software stack in 
python (chiefy to facilitate rapid prototyping), which is not known 
for its high performance. Moving to a compiled and hardware-
accelerated implementation should yield signifcant performance 
gains, able to run on smartphone hardware. 

9 CONCLUSION 
We have presented our work on bringing super resolution tech-
niques, long used in other domains, to capacitive touchscreens. We 
show that through software alone, we can increase the resolution 
of touchscreen sensors. This extra fdelity allows us to e.g., support 
large libraries of tangibles though higher-information-density ca-
pacitive fducials than previously demonstrated. Our evaluations 
and example apps show how everyday objects, such as coins and 
keys can be recognized for assistive and educational applications. 
While we view our work as a useful frst step, demonstrating proof 
of concept, we believe more gains are likely in the future with more 
advanced techniques. 
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