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Figure 1: A) Photo reference of hand input. B) Capacitive image as captured by the touchscreen. C) Our software’s estimated 
bone structure for the given input. D) Fitted hand mesh with applied bone weights. E) Final estimated pose and rendered 3D 
hand. 

ABSTRACT 
Contemporary mobile devices with touchscreens capture the X/Y 
position of fnger tips on the screen and pass these coordinates to 
applications as though the input were points in space. Of course, hu-
man hands are much more sophisticated, able to form rich 3D poses 
capable of far more complex interactions than poking at a screen. In 
this paper, we describe how conventional capacitive touchscreens 
can be used to estimate 3D hand pose, enabling richer interaction 
opportunities. Importantly, our software-only approach requires 
no special or new sensors, either internal or external. As a proof 
of concept, we use an of-the-shelf Samsung Tablet fashed with a 
custom kernel. After describing our software pipeline, we report 
fndings from our user study, we conclude with several example 
applications we built to illustrate the potential of our approach. 
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1 INTRODUCTION 
Today’s touchscreen mobile computers are marvels of modern en-
gineering, yet touch input remains fairly simplistic, generally only 
able to report the X/Y position of one or more fnger contacts. While 
this has usefully lowered the barrier to entry for novice users – 
making interactions “natural” and “intuitive” – it has simultane-
ously contracted the ceiling of interactive possibilities. For this 
reason, many complex applications are cumbersome on touch-only 
devices. 

In response, researchers have long looked at ways to move be-
yond multitouch, and towards more sophisticated and holistic treat-
ment of the hands for user input when operating on a fat-screen. 
Indeed, as far back as 1976, researchers were exploring touchscreens 
that could capture not only fnger X/Y position, but also X/Y shear 
force, downwards pressure, and twisting torque for the purposes 
of a more “natural . . . rich channel .. for man-machine interaction” 
[28]. Since then, a host of other sensing techniques and fnger in-
put dimensions have been explored, including the angle of attack 
[44, 69], touch-type [26, 33, 56], digit diferentiation [7, 40], and 
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hand pose estimation [27]. These projects look beyond multi-touch 
and towards a “rich-touch” future [24]. 

In this research, we set out to see if conventional capacitive 
touchscreens (Figure 1A) could be used to estimate a full 3D hand 
pose (Figure 1C), without any new or external sensors (which is 
where most research is focused, especially hand-sensing wearables). 
A live 3D hand model would not only provide the location of fnger 
touches, but also aforementioned input dimensions such as the an-
gle of attack, touch type, and digit diferentiation – all in one unifed 
method. In some respects, it is the “holy grail” of touchscreen input, 
ofering a true “digital twin” [11] of the user’s hand (Figure 1E). It 
is this large research vision to which we contribute a new method 
and proof-of-concept implementation. 

While the utility for a live 3D hand model in traditional touch-
screen interfaces (2D menus, buttons, sliders, etc.) is currently 
limited (i.e., existing touch pipelines are sufcient for traditional 
widgets), we see the growing importance of 3D modalities as an 
impetus for renewed attention in this feld. Mobile touchscreen de-
vices increasingly become gateways for three-dimensional content 
– whether it be games, CAD, GIS, passthrough AR and many other 
types of software incorporating 3D elements and manipulation. 
For example, rather than users simply clicking on 3D objects in 
smartphone-mediated passthrough AR experiences (analogous to 
tapping on aquarium glass), we envision virtual hands projecting 
out into 3D scenes, able to manipulate and interact with objects. 
Similarly, instead of merely rotating and translating virtual on-
screen 2D tools (as seen in e.g., TouchTools [27]), they can be 3D 
and more richly grasped and manipulated. To illustrate some of our 
ideas, we created a series of small demos, which we describe at the 
end of the paper. We now move to key related work, followed by a 
discussion of our implementation and evaluation. 

2 RELATED WORK 
We now briefy review three highly-related bodies of work. First 
are systems that sought to improve touchscreen expressivity by 
enhancing fnger input, but do not consider the hands holistically. 
Next, we discuss the extensive hand pose literature that exists out-
side the touchscreen realm, most notably external computer vision 
techniques and various worn devices. Then, more related to our 
current work, are systems that recognize hand contour on touch-
screens, most often discrete “gestures” and using optical, rather 
than capacitive touch surfaces. We conclude with a more focused 
discussion on TouchTools [27], which also seeks to enable more 
sophisticated whole-hand input on touchscreens. 

2.1 Rich Finger Input on Touchscreens 
Since the advent of touchscreens, researchers have sought ways 
to capture additional dimensions of fnger input [28]. A major 
breakthrough in recent decades was practical multi-fnger-point 
sensing (i.e., multitouch) [19, 52], but many other input dimensions 
are possible, including fnger contact area [6, 47], part-of-fnger 
detection [26, 33, 56], fnger identifcation [9, 21, 22, 40, 42, 70], 
fnger pressure [5, 10, 18, 32, 51], fnger shear force [25], fnger 
roll [54], and fnger orientation [44, 53, 59, 62, 69]. Researchers 
have also shown that touchscreen capacitive images can be used to 
improve fnger centroid accuracy [37]. In contrast to these systems, 

our goal is to capture a holistic hand model, which encapsulates 
the relative geometry of the fngers, palm and wrist. 

2.2 Non-Touchscreen Hand Pose 
Erol et al. [14] presented a comprehensive literature review cov-
ering RGB camera-based approaches to estimate hand pose using 
computer vision. Other camera varieties have also been considered 
for this task, most notably depth cameras [1, 35, 58]. There are also 
commercial motion capture systems, such as Vicon and OptiTrack, 
can be used to track the hands with millimeter accuracy. However, 
this requires attaching markers to the hand and fngers [16, 41]. To 
be more consumer friendly, systems such as LeapMotion, Microsoft 
HoloLens, and Oculus Quest 2 use a vision-based approach that 
does not require any user instrumentation. Another active area of 
research are arm- and hand-worn sensing approaches that leverage 
techniques such as electromyography, electrical impedance tomog-
raphy [71], air-pressure sensors [34], time-of-fight cameras [63], 
infrared camera [36] and accelerometers and gyroscopes [49]. 

2.3 Hand Shape/Contour on Touchscreens 
In order to avoid external and accessory sensors, researchers have 
long looked at ways to better leverage touchscreen data to cap-
ture a users hands. In the domain of “tabletop” systems, we often 
see touch tracking realized using integrated cameras (such as the 
original Microsoft Surface). Vision-based touch systems generally 
have a better spatial resolution than capacitive touch sensors and 
sometimes have limited depth-sensing capabilities as well (due to 
difuse optics at the screen-hand interface). There are also touch 
sensing systems that utilize external cameras and sensors (e.g., [46]) 
to capture 3D hand pose, but this hardware arrangement is very 
diferent than our approach, where all sensing is contained in a 
consumer mobile device. 

The depth needed to accommodate optics (even “thin” systems 
using complex waveguides) generally means camera-based tabletop 
computing interfaces are large and heavy, and as a consequence 
have fallen out of favor with manufacturers, who have almost 
exclusively turned to capacitive touchscreens. Nonetheless, camera-
based systems allowed researchers to capture and utilize hand shape 
and contour with high precision for more than a decade, with 
applications ranging from user identifcation [55], left vs. right hand 
diferentiation [72], and contact-area-based input techniques [8]. 
Numerous deep investigations of hand “shape” (i.e., 2D contour) 
gestural input on tabletop systems have been undertaken, each 
putting forward unique gesture sets and use cases, which serve as a 
motivational foundation for our current work [8, 13, 17, 43, 60, 64– 
67]. Indeed, we draw all of our evaluation hand poses from this 
prior work, as referenced in Figure 3. We note that while 2D contour 
is expressive, a true 3D model of the hand is fundamentally a high-
order representation. For instance, a 3D hand pose can be used to 
synthesize a 2D contour or 2D touch points. Another important 
commonality in the aforementioned systems is that interactions are 
built around the shape of the 2D contour, and do not infer other hand 
geometry. For this reason, parts of the hand not directly captured 
in the contour are not involved in interactions (as opposed to our 
demos, where “unseen” parts of the hand geometry not touching 
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the screen, such as the palm or back of the hand, can interact with 
digital elements, such as in 3D physics simulations). 

Most related to our work are systems that capture the geome-
try of the hand using a conventional capacitive touchscreen. For 
instance, CapAuth [20] and Mayer et al. [45] had users place their 
hands fat on a screen to capture a handprint for user authentica-
tion and diferentiation purposes. While these systems do capture 
the whole hand geometry in this specifc pose, no other poses are 
considered and no 3D model of the hand inferred for interactive 
input. PalmTouch [38] also uses a standard touchscreen, using the 
capacitive image for enable palm touches as a gestural input mode 
that functions alongside standard fnger input. Finally, BodyPrint 
[31] also uses the capacitive image of a smartphone to detect hand 
grips, but does not produce a hand model. 

Perhaps most similar to our work is TouchTools [27], which ar-
gued that a user’s familiarity with real-world tools could be brought 
into a digital context by having users replicate corresponding real-
world tool grasps. It was among the frst systems to show how 
a more holistic view of hand input could enable more sophisti-
cated touchscreen interactions. While our system shares similar 
motivations, we do not limit ourselves to only grasps, and more 
importantly, our system computes a holistic 3D hand input rep-
resentation (which innately models grasp) that could be used to 
power many applications (in fact, we created a TouchTools inspired 
demo applicaton). In contrast, TouchTools uses a series of geomet-
ric and statistical features to classify among 7 “tools”, each with 
an associated discrete hand pose. There is no higher notion of a 
hand model, or any continuous pose modeling. For some tools, the 
constellation of hand points controls a tool’s rotation, but in most 
cases the tool is locked to the centroid of the active fnger points. 
Inputting a gesture outside of the 7 canonical poses will lead to a 
classifcation error. Implementation wise, TouchTools does not use 
a capacitive image, but rather touch points (X/Y coordinate and 
size) provided by an iPad’s touch controller. For this reason, “tools” 
are built around fnger tip contacts (knuckles in the case of one 
tool), as the iPad screen does not accurately report palm or other 
large inputs. 

3 IMPLEMENTATION 
We now breakdown the various steps of our software pipeline, 
starting with retrieving low-level sensor data and ending with a 
posed 3D hand. 

3.1 Open Source 
To permit detailed study of our implementation, as well as facilitate 
replication and others wishing to explore and extend our approach, 
we have open sourced our system’s code at https://github.com/ 
FIGLAB/3DHandPose. 

3.2 Tablet & Capacitive Image 
For our proof-of-concept implementation, we used a Samsung 
Galaxy Tab S2 tablet (Figure 1A). This device features a 9.1" screen, 
which is perhaps the smallest screen size practical for whole-hand 
interactions (Apple’s 12.9" iPad Pro ofers more than twice the 
screen surface area). This 9.1" screen captures a 37 × 49 capacitive 

image (4.0mm pitch; Figure 1B) at roughly 60 FPS in normal oper-
ation. This capacitive pixel size is roughly average among touch 
devices (LG ’G’ smartwatch (3.5mm pitch) [69], Samsung S4 smart-
phone (3.9mm pitch) [69], Nexus 5 smartphone (4.1mm pitch) [38], 
and Microsoft 55” Surface touchscreen (5.9mm pitch) [68]), and 
thus serves as a reasonable exemplar. Consumer touchscreen de-
vices rarely report their underlying capacitive image data (most 
often used for debugging), and so we recompiled the open source 
Android kernel with a custom touchscreen driver (cf. [31, 38, 39]) 
that is able to communicate directly with the tablet’s Synaptics 
touch controller over i2c (400kHz). Our driver code can be found 
here anonymized_for_review. This i2c interface allows us to stream 
capacitive images from the touchscreen to the main application 
processor at ~16 FPS (in parallel with the 60 FPS touch point data). 
We were able to access this functionality without support from 
Synaptics; other manufacturers may disable this output, but funda-
mentally the data exists inside all projected capacitive touchscreen 
sensors and could be exposed for end-user applications. 

While our prototype used a debugging interface, a commercial-
grade implementation with support from touchscreen controller 
and device manufacturers would undoubtedly utilize a high-speed 
bus able to stream the capacitive image at its native 60 FPS. The 
data overhead is very small compared to e.g., smartphone cameras 
or microphones (just 37 × 49 8-bit values). Although we could 
have created custom high-speed touchscreen hardware, we felt it 
was more impactful to demonstrate feasibility using of-the-shelf 
consumer hardware. 

3.3 Normalization 
Upon receiving a capacitive touch image from the touch controller, 
our frst step is to normalize the input. This is useful to mitigate 
variation due to grounding efects (cf. [19]). First, we suppress 
noise by zeroing all pixels less than 25 in value (the touchscreen 

Figure 2: Left top: Photo reference of hand input. Left bot-
tom: the capacitive image captured by the touchscreen. Cen-
ter column: the best-matching reference pose (top) and 
its corresponding displacement feld (bottom); note all ar-
rows are short, visualizing that very little displacement is 
needed. Right column: a poorly-matching reference pose 
(top) and its corresponding displacement feld (bottom); 
note the many long arrows that show large displacements 
are needed. 

https://github.com/FIGLAB/3DHandPose
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reports unitless 8-bit unsigned integers). Human touch contacts are 
signifcantly higher in capacitance than sensor noise, and so this 
has the efect of leaving touch points Figure 2 and contact blobs 
Figure 8 on a relatively clean background (see also Video Figure) 
for later processing. We then normalize the remaining pixel values 
linearly between 0 and 255. To standardize translation, we ft an 
axis aligned bounding box around active pixels and translate the 
cropped region to the center of a new 50x50 normalized image. 
For rotation correction, we use the axis along which active pixels 
exhibit the most variance, estimated using the principal eigenvector 
of the covariance matrix. Finally, in order to handle diferent sized 
hands, a user-specifed scale factor can be also applied. 

Figure 3: Our hand pose reference set is drawn from the literature: (A) Index fnger [8, 13, 17, 40, 46, 60, 65, 66], (B) Thumb 
[40, 66], (C) Standard pinch [8, 13, 17, 27, 30, 66, 67], (D) Pinch with three fngers [13, 27, 65], (E) Grasping whiteboard eraser 
[27], (F) Four fngers in a row [8], (G) All fngers together [13, 60, 65], (H) All fngers apart [8, 17, 30, 46, 60, 65, 67], (I) Flat 
fst with fngers tucked in [13], (J) Hand fat with fngers together [13, 17, 43, 60, 65, 67], (K) ‘Hand fat, fngers together with 
thumb extended [8, 13, 17, 67], (L) Hand fat with fngers spread [13, 17, 30, 66], (M) Chop gesture [8, 13, 17, 60, 66], (N) Corner 
gesture [8, 13, 17, 43, 66], (O) Hook gesture [13], (P) Fist [13, 17, 60, 67], (Q) Grasping magnifying glass (back of fngers) [27], and 
(R) Resting palm [38]. A blue dot denotes the pose can be performed without the wrist/palm contacting the screen, while an 
orange dot denotes the pose can be performed with the wrist/palm contacting the screen. Some poses can only be performed 
one way. 

3.4 Reference Hand Pose Library 
We initially attempted to programmatically generate a library of 
possible hand poses by performing a parameter grid search using 
a rigged hand and IK solver. However, the 27 degrees of freedom 
of the hand [12] meant the output space was enormous, and even 
if we could generate all possible poses, it would be computation-
ally challenging to search in real time. Additionally, in practice, 
we found that many of the generated output poses were artif-
cial, despite human hands being theoretically capable of forming a 
pose (some examples in Figure 4). A second issue with our purely 

synthetic approach stemmed from shader code we wrote that con-
verted a generated 3D hand pose into a synthetic capacitive image 
(for matching, described next). We found that the vast majority of 
randomly generated hand poses have digits that are bent or lifted 
from the screen, which meant hundreds of poses would have near-
identical capacitive images (example ofered in Figure 5) with no 
clear way to select a “winning” pose. 

This outcome signifcantly infuenced our decision to craft a more 
informed set of reference hand poses, ones that more closely match 
how humans actually shape their hands to engage in a touchscreen-
mediated experience. For this, we turned to the literature, surveying 
13 papers from which we drew 18 hand “gestures” and poses. Many 
of these can be performed two ways – with the palm hovering 
or resting on the screen – and so several of the poses shown in 
Figure 3 are functionally considered two poses in our reference set 
(for a total of 26). To build this library, we had four users (separate 
from our later study participants; hands ranged between 17 and 
19.5 cm in size) perform these hand poses, and we recorded the 
capacitive image from the touchscreen. The last step is to link the 
capacitive image with a corresponding 3D hand pose, which we 
manually pose in Blender [3] using LibHand [61], an open source 
hand model. 

Figure 4: Four example hand poses that demonstrate the lim-
itations of a grid search approach. While all poses are theo-
retically possible to form, they are rare or near-impossible 
to hold. 

Figure 5: Illustration of diferent hand poses (left four 
images) producing equivalent capacitve signals (example 
shown far right). 
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Figure 6: Six snapshots showing a hand transitioning from 
an chop (pose M) to a fst (pose P). First row: reference photos. 
Second row: closest reference pose. Third row: displacement 
feld between the live input and best pose. Bottom row: fnal 
3D hand output pose. 

3.5 Non-Linear Deformation & Matching 
The next step is to take live hand pose input and match it to one 
of our reference hand poses. We found that the capacitive image 
of a real hand is rarely an exact match to our pre-recorded refer-
ence pose set’s capacitive images. For this reason, a simple image 
diference metric will generally fail. Instead, to better account for 
geometric variation, we compute the warp between the input capac-
itive image and all reference hand pose capacitive images. For this, 
we use Farneback optical fow [15], which is computationally light-
weight. This produces a displacement feld, with warp vectors for 
every pixel in the capacitive image. This feld can also be thought 
of like a two-dimensional edit distance - translating, deleting or 
copying pixels in order to match one capacitive image to another. 
As such, we found summing the magnitude of the feld vectors to 
be an excellent measure of distance, and we use it as the primary 
factor in our matching metric. Figure 2 ofers an example input 
alongside a good and poor match, with displacement felds shown 
for illustration. We found this process to be robust to variation in 
contact pressure (which tends to enlarge the contact area, but not 
deform the shape sufciently to cause an incorrect pose match) and 
user hand size (once normalized). 

An additional issue is that large hand features (notably the palm 
or side of hand) will activate more pixels, and thus induce more 
displacement vectors that contribute to the total cost. This can 
greatly increase the distance to the correct pose match even if all 
the fngertips match well. To mitigate this efect, we identify all 
blobs of active pixels (with 4-connectivity). Before we sum the 
magnitudes of the displacement vectors, we scale the magnitude 
by the inverse of the number of active pixels in the blob (or closet 
blob if the vector originated outside active pixels). Additionally, 
since the displacement feld can also delete or create blobs with a 
comparably low cost, we add an error term that accounts for any 
diference in blob count. The fnal cost for matching is then: Õ ∥v ∥

10 × ∆blob count + 
Wv v ∈fow vectors 

Figure 7: Three diferent inputs of a pinch gesture (pose 
C). First row: reference photos. Second row: displacement 
feld between the live and best reference pose. Third row: 
rendered 3D hand pose. Note how the distance between the 
pinching fngers is faithfully captured. 

where Wv the number of active pixels in the blob closest to the 
origin of the fow vector v. 

3.6 End Efector Manipulation and Inverse 
Kinematics 

The 26 discrete hand poses in our reference set is much too coarse 
to smoothly animate or depict fne-grained hand movements. In 
other words, if we used only these poses, any dynamic hand input 
would appear to instantly snap between reference poses, breaking 
realism and precluding many interesting inputs. Thus, once a match 
is made to a coarse reference pose, we perform a second-stage fne 
manipulation of the 3D model to better match the live hand pose. 

The open source hand model [61] we use contains 21 joints in a 
fully articulating skeleton (Figure 1). We specify six end efectors 
– the fve fngertips and the wrist. We use Blender’s inverse kine-
matics (IK) solver [4] to resolve natural hand poses given our input 
data. More specifcally, we project the winning reference pose’s 
rigged hand down onto our aforementioned displacement feld, 
which maps the winning reference pose to the live hand input. The 
displacement vector that maps to each end-efect’s position is then 
applied as a fne-grained warping. One can think of this process 
similar to an elastic sheet, which has been non-linearly stretched, 
and then pinning a reference rigged hand to the sheet and releasing 
the tension - the bone structure of the rigged hand will now “snap” 
to some intermediate state. 

This result of this process not only yields hand poses that better 
match user input, but also allows for continuous animation between 
our sparse reference hand pose set. Figure 6 ofers an illustrative 
example showing a user moving between ’chop’ (pose M) and ’fst’ 
(pose P) — transitioning through poses N and O – along with the 
corresponding displacement vector feld and fnal hand pose output. 



MobileHCI ’21, September 27-October 1, 2021, Toulouse & Virtual, France Choi et al. 

Figure 7 ofers a second example, where a two-fnger pinch (pose 
C) is being warped to more faithfully match the user input. The 
other signifcant beneft of this pose interpolation is our ability to 
dramatically reduce the size of our reference library to key poses, 
allowing for greater computational efciency. This approach stands 
in contrast to e.g., [58], which used a very large library of inter-
mediate hand poses (30K) and extreme parallelization to identify a 
candidate hand pose for its computer-vision-driven approach. 

Figure 8: Example of additional pose logic. Although only 
the pinky is captured in the touchscreen capacitive image 
(left), we decide to animate all of the fngers as one unit (cen-
ter), as opposed to just moving the pinky alone (right), as 
this is less natural. 

3.7 Special Pose Heuristics 
For hand poses where the palm and fngertips rest on the screen, 
there is sufcient data for the IK solver to produce a realistically 
posed output. However, other hand poses have parts lifted from the 
screen; while the IK solver will try its best given the constraints, 
some outputs are patently incorrect, while others are unstable. To 
improve pose realism and stability when only limited data about 
the hand is available, each of our reference hand poses can include 
optional posing heuristics that introduces additional positional con-
straints. For instance, with our ’L’ hand pose, only the pinky fnger 
is captured by the touchscreen. While we could animate the pinky 
fnger independently, we observed it is far more likely for users 
to move their fngers together as a unit (Figure 8, center), rather 
than just the pinky alone (Figure 8, right), and so this reference 
pose contains this additional logic. Similarly, for all hand poses 
with one or more digits raised, we do not know the true height of 
the hovering fngers, and so we simply set their target position to 
between 2-6 cm above the surface of the screen (depending on the 
pose) as a coarse estimate for the IK solver. 

3.8 3D Hand Output & End-User Applications 
We use Blender’s armature deform parenting to realistically skin 
a hand mesh in accordance with the underlying skeleton, now 
fully posed by our pipeline. LibHand [61] also comes with a photo-
realistic skin texture, which can be applied if desired. We envision 
our 3D hand pose estimates being exposed via an API on touch-
screen devices. In its simplest form, applications developers could 
instantiate event listeners for hand poses in much the same way as 
basic touch events today; e.g., instead of onTouchDown(), it might 
be onFistBump(). For uses in games or mobile augmented reality, 
the full 3D hand mesh could be requested and rendered on-screen. 
As a proof of concept, we used the current version of our API to 
build several example applications, described later. 

3.9 Performance 
Our implementation described above was designed to be a vehicle 
for rapid exploration, experimentation and iteration. It is written 
in Python and JavaScript – interpreted languages not known for 
their performance. We also rely on a suite of software packages, 
such as Blender, and pass data around using local sockets. In short, 
this is how one designs a research proof-of-concept, but not a 
commercial product. Nonetheless, we can report the performance 
on two diferent machines that we used for development: On a 
3.8GHz Ryzen 9 3900X desktop, our process takes up less than 5% 
of the CPU and runs as fast as the tablet can transmit capacitive 
images over USB (16.2 FPS). On a less powerful Intel Core i7 laptop, 
the full stack runs at ∼10 FPS consuming around 25% of the CPU. 

More interesting is to consider how our pipeline might run on 
mobile hardware if it were to go through a commercial engineering 
process. Rather than extrapolate, we can look to a close analog: 
the 3D hand pose tracking available in the Oculus Quest 1 and 2. 
Facebook’s software has to deal with more pixels than our capacitive 
image approach, but nonetheless must also pose a 3D hand model 
containing 21 joints (same as our system). As noted in the software’s 
academic paper [23], the hand pose estimation runs at 30 FPS on 
a Qualcomm Snapdragon 835 mobile processor with 4GB of RAM 
(roughly equivalent to an iPhone 7 in performance), and of course 
there is extra compute available to run intensive VR games for 
hours on battery power. The newer Oculus Quest 2 is even faster, 
and today’s fagship phones are multiples faster. This demonstrates 
what commercial engineering and optimization can achieve, and 
there is no fundamental reason that similar performance is not 
possible with our approach. 

4 EVALUATION 
We gathered quantitative and qualitative data from 12 participants 
to evaluate our system’s ability to estimate 3D hand pose. We now 
describe our apparatus and procedure, followed by main results. 

4.1 Apparatus 
Participants were asked to sit in front of our tablet resting fat on 
a table. For data recording, the tablet was connected to a desktop 
PC via USB (grounding the tablet and also keeping it charged), 
streaming capacitive image directly to our software pipeline. Note 
that our software can also operate untethered and ungrounded, as 
seen in our Video Figure (see e.g., capacitive images when plugged 
in (0:23-0:36) and not (0:36-0:45), and later in the video, demos 
running with/without grounding). A separate monitor was used 
to prompt poses from participants, and was also used to show the 
estimated pose result, allowing them to rate the output quality. 
Although we could texture the hand, we wished to minimize the 
efect of color and gender [57], and so hands were presented in 
a fat gray. An private experimenter’s view running on another 
monitor allowed us to guide the participants through the stages of 
the study. Importantly, the experimenter did not see the live pose 
output until a trial was captured (to avoid bias). 

As the front and back of users’ hands were used to touch the 
screen across our various poses, it was not possible to attach in-
frared refectors to the hand for use with a high-precision motion 
tracking system. As an necessary experimental compromise, we 
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used a Microsoft Kinect mounted 1m above the tablet to capture 
depth maps and calibrated RGB stills of participants’ hand poses. 
We experimented with automated hand keypoint labeling [48], but 
found the output to be occasionally catastrophically incorrect (re-
quiring manual review) and even when “correct”, spatial error of 
joints was substantial (even though the hand skeleton was correct 
holistically speaking). We also tried a Leap Motion, but it was con-
fused by the tablet refecting infrared light (the device is designed 
to illuminate the hands in the air without strong environmental 
refections). Instead, joints were manually annotated after the study 
by personnel without knowledge of the experiment, providing a 
3D ground truth for benchmarking. 
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Figure 9: The joint displacement for the 26 references poses. See Figure 3 for pose letter key. ’-P’ means the pose was with the 
palm contacting the screen surface. 

4.2 Procedure 
After welcoming participants, participants were given a brief ori-
entation. We answered all open questions and asked them to sign 
an consent form. Afterwards, we asked participants to place their 
hand onto the screen in order to capture the length of their hand 
(from wrist to farthest fnger tip), which was used to automatically 
scale all pose outputs. Participants were then prompted to perform 
all 26 poses in our reference pose set (Figure 3) in a random order. 
This was done by showing them a reference photograph (Figure 3) 
on an external monitor. Once the participant was satisfed they had 
assumed the pose, the participant informed the experimenter, and a 
single snapshot of the 3D hand pose from our live pipeline (which 
was running continuously) was saved in concert with the aforemen-
tioned Kinect depth and RGB data. This hand pose data was then 
immediately shown to participants in a top-down view (example 
output shown in Figure 6, bottom row). While maintaining their 
hand pose, participants were then asked to verbally answer two 
questions shown on-screen using a 7-point Likert scale (strongly 
disagree to strongly agree). The frst statement was “The virtual 
representation of my hand matches my real hand’s pose”, which 
sought to answer whether the virtual hand rendition matched their 
actual hand pose. The second statement was“The virtual represen-
tation of the hand looks natural”, which we included to measure 
if the virtual hand was posed in a natural manner, even if it did 
not match the user’s hand pose (i.e., that our IK was able to solve 
for a reasonable pose, even in cases of a tracking or posing failure). 
Both questions were reviewed with participants during the study 

orientation to confrm their understanding. Once both questions 
were answered, users could withdraw their hand and relax. When 
they indicated they were ready to proceed, a new trial began by 
once again showing a reference photograph of a requested pose. 
The study took around 20 minutes to complete, and participants 
were compensated USD10 for their time. 

4.3 Participants 
We recruited 12 participants (2 female) from our institution, with 
a mean age of 25.8 (SD=4.7). As noted previously, none of the 12 
participated were used in capturing reference data for our hand 
pose library. The mean length of participant hands was 18.0 cm 
(SD=1.1) and the mean width was 8.5 cm (SD=0.8). These span from 
the 5th to 95th percentile of human hand sizes [50]. Other than 
asking participants to form a pose, we explicitly chose not to control 
for aspects such as pressure to capture variability in our data and 
begin to explore generalizability across users. 

4.4 Results 
To evaluate the spatial accuracy of our pipeline, we compare the 
3D position of each virtual hand joint to the annotated, real-world 
user’s hand. As we care about the relative arrangement of the hand 
joints that make up a pose (as opposed to absolute world position), 
we use a palm-origin coordinate system. 

Across all poses and participants, we found a mean 3D euclidean 
joint error of 22.4mm (SD=5.9mm). Figure 9 provides an error break-
down for the 26 hand poses we tested. For poses where many joints 
touch the screen (e.g., poses J, K, and L) error is 14.5mm (SD=2.1). If 
we look only at joints in contact with the screen (i.e., cases where we 
have direct sensor data), we fnd a mean euclidian error of 11.2mm 
(SD=9.8mm) across all 26 poses. This means that end efectors that 
are likely to be directly interacting with digital content are also the 
most accurate. In contrast, poses that have just one or two joints 
touching the screen (e.g., poses A and B) have much higher error 
due in large part to the system having to estimate totally un-sensed 
joints. 

This efect is illustrated in our Video Figure. For example, at 
1:40-1:42, where a user performs a drag with the “index fnger” (A) 
pose, the one joint physically touching the screen (index fnger 
tip) is stable and accurate, while the other 14 joints have to be 
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guessed purely of the estimated pitch and yaw of that one joint, 
which is inherently accurate, especially as one moves along bone 
linkages. Next in the video (1:42-1:44), a "resting palm" (R) pose is 
performed, where once again a vast majority of the hand joints are 
being estimated in 3D space with no direct data (just inferences). In 
both pose cases, if our system misestimates the hand angle by even 
10 degrees, it will lead to centimeter-level inaccuracies at distant 
joints (driving up mean error). Likewise, if the user bends their 
fngers away from our guessed neutral pose, this will again lead to 
compounding spatial errors. Nonetheless, the overall gestalt of the 
hand pose is preserved. Our Video Figure provides a good sense of 
how this error manifests in practice. 

In a similar manner, we found that poses that orient the hand 
perpendicular to the screen (e.g., poses M, N, O and P) had higher 
error (mean=27.7mm, SD=4.4), stemming from having to estimate 
Z distance of joints (i.e., distance from the touchscreen’s surface) 
with very little information (e.g., fngers held tightly together or 
spread apart). Interestingly, we did not fnd a correlation between 
the quantitative correctness (joint spatial error) and qualitative 
correctness (hand match questionnaire), with a Pearsons correlation 
factor of -.063. 

We note that even though our system stores a library of reference 
hand poses internally, it is not valid to simply compute discrete pose 
recognition accuracy. This is because our large pose set (compared 
to any prior work) is meant to enclose a continuous pose space, 
and as such, one pose can often be warped to another. For example, 
poses E, G and H can be warped to one another, as can J/K/L and 
M/N/O/P. In many cases, our optimization function prefers to warp 
an “incorrect” pose to achieve a better geometric match, and as 
such, mean euclidean join error is a superior evaluation metric for 
a system estimating 3D hand pose. 

We found that all of our participants had roughly the same per-
formance, with no outliers, suggesting that hand size, pressure, 
skin moisture, and user grounding condition are not major fac-
tors, though we caution that n=12 is small. However, we note this 
matches our anecdotal observations throughout many months of 
development, which involved more individuals. The fact is these 
touchscreens have been highly engineered for robust performance 
across a wide range of users and environments (e.g., high/low hu-
midity environments and adverse conditions such as rain drops on 
the screen). Our pipeline was designed to account for variations 

in contact condition – whether that be from diferent hand sizes 
(we tested 5-95th percentile) or touch pressure – by looking for the 
closest matching pose. 

For the question about the virtual hand “matching” their real 
hand, we found that all gestures but pose Q (“Grasping magnifying 
glass”) had a positive rating above “neutral” (>4). Pose Q is the 
only pose where the back of the hand touches the screen and we 
hypothesize that the boniness of this part of the body precludes 
good contact with the capacitive touchscreen, and results in an 
unreliable signal for pose estimation. Across the remaining 25 poses, 
the average quality score was 5.2 out of 7 (SD=0.5); see Figure 10. For 
the question about if the generated, virtual hand looked “natural”, 
we received similar responses. Again all but pose Q was rated 
higher than 4 (neutral) by our participants (mean quality score 
of 5.4, SD=0.6; Figure 10). This suggests that our IK solver was 
good at preventing unnatural hand poses, even when it received 
confusing or conficting data. To understand how the two Likert 
ratings were efecting each other, we frst performed a Wilcoxon 
signed-rank test. The test showed no signifcant diferences (Z = 
8184, p=.230) between the two questions; a Pearsons correlation 
showed a correlation of .464. 
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Figure 10: The “match” and “natural” Likert ratings for the 26 references poses. See Figure 3 for pose letter key. ’-P’ means the 
pose was with the palm contacting the screen surface. 

5 EXAMPLE APPLICATIONS 
We believe the next step beyond multitouch is a fully-realized, 
real-time, 3D model of the user’s input hand. This could enable 
a wealth of rich input techniques, from fnger-level interactions 
with dimensions such as angle of attack, all the way to whole-
hand manipulations. To help illustrate this generalizability, we 
selected four exemplary application areas that could beneft from 
our approach. These applications are also demonstrated in our 
Video Figure. We include a ffth section with other speculative uses. 

5.1 3D Physics & Manipulation 
As a 3D manipulation demo, we created a simple waterfall simu-
lation where droplets can fow around the complex geometry of 
a hand reaching into the scene (Figure 11A). In a similar vein, we 
created a playground of blocks (Figure 11B) that users can grab and 
push around, taking into account full 3D hand shape. In both of 
these example apps, no hand model is seen on the screen. Instead, 
we translate an invisible copy of the virtual hand model to just 
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below the touchscreen glass, where it can participate in a physical 
simulation. By using an orthographic projection (and assuming the 
user is looking roughly perpendicular to the screen), we can create 
a perspective illusion that the user’s real hand is interacting with 
virtual objects (e.g., virtual droplets appear to bounce of the user’s 
actual knuckles). 

Figure 11: A) a minecraft-esque waterfall simulation has 
droplets that bounce and fow of the user’s actual, full-hand 
geometry. B) a user interacts with blocks, which conform to 
the actual 3D geometry of the user’s hand pose as if it were 
translated down into the scene. 

5.2 BumpTop++ 
Agarawala and Balakrishnan [2] presented the idea of a physics-
based computer desktop environment, later called BumpTop. In this 
3D simulation, users could push fles around, make piles, and per-
form similar physical manipulations. However, input was through 
a stylus — inherently single-point and two-dimensional - which 
limited the otherwise rich 3D experience. Inspired by this creative 
research, we created a BumpTop-inspired clone leveraging our 3D 
hand pose pipeline. This allows users to not just form piles with 
their bare hands, but also pickup items with their fngertips and 
create stacks in a much more natural and inherently 3D manner, 
see Figure 12. 

Figure 12: In this BumpTop-inspired demo [2], users can 
pick up fles (left & center), create piles, and push documents 
around (right). 

5.3 TouchTools++ 
Another inspirational research system was TouchTools [27]. In 
this system, users could form diferent hand grasps, place that 
hand down onto a touchscreen, and a corresponding tool would 
be summoned (e.g., marker, whiteboard eraser, magnifying glass). 
The tools, however, were entirely 2D – both graphically and in how 
they could be manipulated. For example, the marker tool could 
be translated and rotated on the screen, but not tilted. Of course 
there are many tools where true 3D manipulation is key to their 
expressively, such as a chisel-tip marker or paintbrush. To illustrate 
this, we created a simple TouchTools-inspired demo that not only 

Figure 13: In this TouchTools-inspired demo [27], the hand 
mesh is used to manipulate virtual tools, such as this brush, 
with six degrees of freedom instead of the usual two, ofer-
ing more expressive input. 

summons a tool based on the hand grasp, but then also correctly 
manipulates that tool in 3D. Figure 13 shows an example sequence 
of someone drawing calligraphy with a brush, where the tilt impacts 
the stroke thickness. 

5.4 "Reach Into" Passthrough Mobile AR 
In our fnal example, We envision mobile AR applications that allow 
users to “reach” into scenes by projecting the user’s 3D hand pose 
out in front of the device. In contrast to just tapping on the screen 
glass as if it were a mere window looking out onto a scene full of 3D 
objects, our approach could be considerably more immersive and 
embodied. To illustrate this new interaction paradigm, we created 
a simple educational game (Figure 14) where children must identify 
virtual recyclable waste distributed in an environment, pick these 
items up, and deposit them into a recycling bin using appropriate 
hand grasps. 

Figure 14: In this educational mobile AR game, users must 
identify recyclable waste (A), pick it up with a virtual hand 
projected into the scene (B), and deposit it into a recycling 
bin (C). 

5.5 Other Speculative Uses 
Beyond the fve examples applications we built, there are many 
other uses of 3D hand pose data on touchscreens. We look for-
ward to building these apps and submitting them as part of future 
publications, along with context-specifc evaluations. However, we 
provide a brief overview of some of the ideas we have planned to 
illustrate future and speculative uses. 

For example, text entry on touchscreen devices continues to be 
a signifcant input bottleneck. Without good tactile references, the 
fngers tend to drift or mis-click keys, leading to errors. However, 
knowledge of what fnger is touching the screen could be used 
to help resolve ambiguities in typed input. For example, if the 
touchscreen sees a touch event between the ‘g’ and ‘h’ keys, it 
may not be entirely obvious which letter to trigger. However, by 
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knowing what digit spawned the touch event (e.g., left or right 
index fngers), a bias could be applied. In this example, it is more 
likely the left index fnger would type a ’g’ than a ’h’ (even if the 
Cartesian coordinates of the touch event happened inside the ’h’ 
key’s hit box). In fact, each fnger could have a custom key-region 
mapping to improve accuracy. 

We also believe there are many creative uses in gaming, which 
can bring novelty and fun to touch experiences. For example, in a 
fantasy game, the user’s hand input could be used to cast spells or 
wield diferent physical weapons. Building sims could allow users 
to grasp, stack, hammer and saw materials, again using appropriate 
grasps and hand poses. Like with our pass-through augmented 
reality recycling app, users could also reach into new gaming expe-
riences, such as physically trying to catch Pokemon. 

Finally, we also foresee uses in social apps and experiences. In 
reality, human-human communication includes expressive hand 
use. As a simple example, messaging apps could trigger hand ges-
ture emoticons by the user physically performing that hand pose 
on the screen (e.g, high fve, thumbs up). Or perhaps user can send 
animated hand gesture messages - almost a handimoji. In social 
experiences employing avatars, a user’s hands could be more dy-
namically expressed than simply pressing a comprespond hand 
gesture button. 

6 LIMITATIONS & FUTURE WORK 
While we believe our pipeline demonstrates feasibility, it is not yet 
sufciently accurate for consumer applications. This gap is perhaps 
magnifed by the impressive performance of modern touchscreens, 
which are both accurate and low latency, setting a high bar. Our 
computational requirements are much higher than standard touch 
pipelines, where almost all computation (adaptive backgrounding, 
blob segmentation, touch tracking, etc.) occurs on a dedicated touch 
controller IC, with only processed touch events being passed to the 
main application processor. For the foreseeable future, we envision 
our pipeline having to run on the main application processor, which 
is more power intensive. For this reason it would seem unlikely for 
our process to run continuously, as the standard touch pipeline does, 
and instead would start as a background service when applications 
request such data (not unlike other computationally expensive APIs, 
such as opening a camera or running an AR SDK). As discussed in 
greater length in our Performance section, our pipeline is very much 
a proof-of-concept implementation, and is not presently able to run 
on mobile devices. However, as also noted in that section, there 
are analogous processes that have gone though commercial-level 
engineering eforts that show that equivalent complexity is possible 
on mobile-grade hardware, which continues to make impressive 
strides in performance. 

We also note that while our twelve-participant study demon-
strates the overall feasibility of our approach, there are obviously a 
range of factors that merit future investigation. For example, we 
did investigate children’s hands (our participant hand sizes only 
ranged from 5-95th percentile of adult hands). Likewise, the ability 
for a user to place their hand on a screen at a tilt, or even while 
on-the-go, will no doubt infuence the capacitive image. Both con-
ditions are readily detected by a mobile device’s IMU, so perhaps 
diferent reference pose sets (or match parameters) could be loaded 

to compensate. In adverse conditions, such as raindrops on the 
screen or a user with wet hands, the capacitive image will vary and 
require other compensation strategies. Additionally, we only evalu-
ated stable hand poses. While our pose test set is large compared to 
prior work (e.g., TouchTools’ [27] 7 poses vs. our 26 poses), it does 
not evaluate dynamic tracking accuracy (e.g., hands moving and 
inter-pose classifcation) – an experimental compromise given the 
limits of uninstrumented external 3D hand tracking technologies 
(see Procedure section). Instead, we modeled our study procedure 
on that found in prior HCI hand pose work such as [17, 27, 43, 46]. 
That said, our Video Figure demonstrates continuous and inter-pose 
hand tracking, which ofers a point of reference. 

Finally, despite capacitive touchscreens only providing a very 
coarse sensor image (with capacitive pixels around 4mm in size), 
this resolution is sufcient to capture the geometry of the hand, 
including the smallest element we have to handle: fngertips. This 
is not coincidental – touchscreens have been very carefully engi-
neered to be the lowest possible resolution (chiefy to improve scan 
rate) while still able to accurately capture fnger input. For this rea-
son, we suspect that higher-resolution touchscreens would provide 
only marginally better hand poses. That said, there is one dimen-
sion of touchscreen data where improvement would be welcome: 
sensing range. If this could be extended to several centimeters, as 
demonstrated in Hinckley et al. [29], it would provide much more 
3D data about the shape of the hands not immediately in contact 
with the surface of the screen. 

7 CONCLUSION 
We have described our system that allows conventional 2D capaci-
tive touchscreens to infer a user’s 3D hand pose. We believe this 
capability will be important as mobile touchscreen devices increas-
ingly become gateways for three-dimensional content – whether 
it be games, CAD, GIS, passthrough AR and many other types of 
software incorporating 3D elements and manipulation. Uniquely, 
our approach is software-only and could be made to run on any 
modern capacitive touchscreen device. While signifcant work re-
mains, we believe our software pipeline demonstrates imminent 
feasibility, and we hope others will join us in fully exploring and 
enabling this input modality in future work. 
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