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ABSTRACT
User movement data is essential for providing feedback in the area
of motor-skill learning. For instance, when learning a new sport
such as dancing, people can benefit from meaningful technology-
based feedback. However, movement tracking equipment for real-
time feedback is costly and challenging to implement. In contrast,
wearable devices tracking users’ movements are accessible and light-
weight. While their lower cost makes them available to a broader
audience, several open issues include sensor placement, sensor
count, and data synchronization. To address these issues, we pro-
pose a wearable sensor-fusion approach for motor skill learning
that allows researchers and developers to use one or multiple body-
worn sensors for motion tracking. The extracted motion can then
be used to deliver real-time feedback on the user’s performance,
supporting positive learning experiences.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI).
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VISION
Body tracking is one of the main components of generating mean-
ingful automated feedback for supporting motor skill learning. To
illustrate, Villa et al. [9] derived design requirements for a wearable
feedback system for motor skill learning. While Ahuja et al. [1]
estimated the user’s pose only using the smartphone’ built sensors,
working with several sensors across different body parts provides
more accurate data for body position tracking.

Existing challenges in motion tracking using wearable sensors
such as sensor drift [10], sensor synchronization [4], and the recog-
nition of specific movements have been addressed over the last
few years. Yet, the identified solutions have never been combined
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into one toolkit. Moreover, sampling frequency, latency, and other
hardware-specific characteristics also impact the tracking qual-
ity (e.g., [2, 7, 8]) as well as sensor placement (e.g., [3, 10, 11]).
Finally, various sensors (e.g., depth cameras) have been used for
sensor-fusion approaches for body tracking (cf. [1, 6]). We propose
designing a toolkit that handles data synchronization and process-
ing. We envision that this will facilitate the development of scalable
wearable devices for motor skill learning.

DESIGNING THE TOOLKIT
When designing a wearable sensor-fusion motion tracking system
for motor skill acquisition, we consider various aspects, such as
positioning of the body and the number of sensors (cf. 1). Fur-
ther, the system could be adapted to different tasks or scaled using
different sensors. Considering the design requirements for a wear-
able feedback system [9], learners benefit from implicit feedback
while allowing them to focus on their performance [5]. Thus, the
toolkit needs to process the incoming data from multiple sensors
in real-time to generate feedback. Depending on the movement
to be investigated, the system consists of multiple sensors across
the body. We envision that our toolkit will guide potential users
in sensor selection, sensor placement, and connection. Our toolkit
caters to researchers and developers designing a wearable feedback
systemwithout in-depth sensor knowledge, allowing them to create
a use case tailored system.
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