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ABSTRACT
Today touchscreens are one of the most common input devices for
everyday ubiquitous interaction. Yet, capacitive touchscreens are
limited in expressiveness; thus, a large body of work has focused
on extending the input capabilities of touchscreens. One promising
approach is to use index finger orientation; however, this requires
a two-handed interaction and poses ergonomic constraints. We
propose using the thumb’s pitch as an additional input dimension
to counteract these limitations, enabling one-handed interaction
scenarios. Our deep convolutional neural network detecting the
thumb’s pitch is trained on more than 230,000 ground truth images
recorded using amotion tracking system.We highlight the potential
of ThumbPitch by proposing several use cases that exploit the
higher expressiveness, especially for one-handed scenarios. We
tested three use cases in a validation study and validated our model.
Our model achieved a mean error of only 11.9◦.

CCS CONCEPTS
• Human-centered computing → Touch screens; Empirical
studies in HCI; • Hardware → Touch screens.
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Figure 1: A developer mode of ThumbPitch input, with the
capacitive image on the screen and the correlated pitch value
of the thumb.

1 INTRODUCTION
Touch-based devices dominate the interaction landscape and can
be found not only in mobile devices, such as smartwatches, smart-
phones, and laptops, but also in devices traditionally with haptic
buttons, such as door-lock pads or household appliances. Touch-
screens are attractive because they combine input and output in a
single interface. Thus, they are easy to learn and use. However, the
simplicity of touch interaction comes with several limitations, the
most prominent being limited expressiveness; that is, today’s touch
controllers only extract a 2D point from the finger touching the
surface. Yet, finger input contains much more information, such as
finger type, pressure, and orientation.

Consequently, an increasing number of researchers and manu-
facturers have investigated ways to extend the capabilities of touch-
screens with additional input dimensions. For instance, Knuckle-
Touch [13, 34], an enriching interaction that nowadays can be found
in a wide variety of Huawei phones. However, this approach or
others like Apple’s ForceTouch are still limited in expressiveness
as they can only input two or three levels (finger vs. knuckle). Be-
yond enriching interactions that made it into consumer products, a
wide variety of interactions for touch-based devices has been pro-
posed over the last decades, such as finger-identification [10, 19, 24],
finger-authentication [11, 17], the finger roll [32], and most promi-
nently, finger orientation [27, 31, 36, 39]. Finger orientation offers
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the largest input space with two dimensions; however, the enlarged
input comes at an ergonomic cost [26, 28]. Boring et al. [3] present
a promising approach by approximating the thumb contact area
as additional input. However, they only rely on a single value to
estimate the input: the ellipse major. Due to the lack of fine-grained
touch information, this implementation requires a one-time setup
process. Moreover, the user has to specify their input hand for every
interaction. Finally, their approach assumes that the change in el-
lipse major is linearly correlated with the pitch. Their work hinted
that the contact area or the shape could improve their accuracy.
We follow up on the hints by Boring et al. [3] and improve their
estimation approach using deep learning.

We present ThumbPitch: a deep learning approach to estimate the
thumbs’ pitch angle to allow for a richer interaction, see Figure 1.
At its core, ThumbPitch uses a convolutional neural network (CNN)
regression model to estimate the pitch of the thumb based on the
raw capacitive image recorded by the touch controller. In detail,
we trained our model on data collected in a ground truth data
collection study. Finally, we present several use cases that enrich
touch interactions using ThumbPitch, of which we evaluate three
in a separate study. We demonstrate that the method is accurate
and robust across users when trained on a suitable amount of data.

ThumbPitch has two key advantages over existing touch input
techniques. First, the nature of ThumbPitch allows for a one-handed
interaction, which makes it the only technique that enables one-
handed scenarios to support more than three input levels allowing
for richer interaction. Second, ThumbPitch is highly practical, given
that our deep learning estimation model can be deployed with a sim-
ple software update. This makes our technique directly applicable
to the billions of touch screens already deployed worldwide. In sum-
mary, we contribute to the design, implementation, and evaluation
of our ThumbPitch deep learning approach. A one-handed interac-
tion that enables continuous value input. Moreover, we open-source
ThumbPitch, allowing others to improve and deploy it.

2 RELATEDWORK
While the literature on extending the interaction space for mobile
devices and touch-based devices cover a wide range of possibili-
ties, we will focus on techniques that directly impact or inspire
ThumbPitch. Boring et al. [3] first proposed the idea of using the
thumb as an additional input dimension. However, in their early
implementation, they only allowed for a set of levels as input. Thus,
continuous input was not possible. We will focus on ergonomic
constraints during input and then on interaction techniques that
only use the front screen to understand this limitation.

2.1 Reachability and Ergonomic Constraints
Mobile devices are distinctly different from stationary systems,
such as PCs, in terms of affordances and ergonomic constraints,
as the dominant input is touch. While today’s touch controllers
only extract a 2D point, Holz and Baudisch [15, 16] showed that
touch input is multi-dimensional. Nevertheless, grip and reachabil-
ity impact the usability of touchscreens. Bergstrom-Lehtovirta and
Oulasvirta [1] studied the thumb’s reachability for smartphones.
They showed a correlation between surface size, hand size, and
position of the index finger. Also, the finger orientation input has

been shown to have heavy ergonomic constraints when using the
index finger in a two-handed scenario [28]. At the same time, Wolf
et al. [37] showed a high fidelity of the thumb during interaction
with tablets. Further, Trudeau et al. [35] argued that buttons close
to the resting position of the thumb are optimal for frequently used
actions, while all other positions need more effort to be reached.
Yet, Le et al. [25] showed that the thumb could reach large portions
of the front screen without changing the grip. Thus, we argue that
ThumbPitch has great potential to overcome current drawbacks.

2.2 Extended Interaction for Mobile Devices
As the contact area is often provided already up to the application
layer in today’s operating systems, one of the simplest enrichments
for touchscreens is using the fingers’ contact area [3, 8]. Similarly,
Roudaut et al. [32] proposed rotating the finger around the roll
vector by classifying left and right rolls based on the touchpoints.
Other enrichments use separate sensors or data that are not pro-
vided to the application layer. One prominent example is detecting
different parts of the finger touching the screen, which was initially
envisioned by Harrison et al. [13]. They used the sound emitted
by fingers when touching the surface to recognize the finger part.
Later, Schweigert et al. [34] presented a deep neural network ap-
proach to use the capacitive image to distinguish between finger and
knuckle touches. Initial work by Colley and Häkkilä [6] proposed
finger-aware interaction. However, they used the Leap Motion to
prototype the interaction, which made the device bulky. There-
fore, Zhang et al. [40] used the built-in capacitive image coupled
with electric field sensors to enhance pen and touch interactions
using only small external sensors. Finally, Le et al. [24] presented
a deep CNN recognizer to enable finger identification on a com-
modity smartphone without any external hardware. As a result of
this development, we argue that using the capacitive image from
the touchscreen has a high potential to enrich mobile interactions.
Moreover, as today’s mobile devices all use capacitive sensors, de-
ploying new interaction techniques, such as ThumbPitch, is possible
with only a simple software update.

Capacitive images have already been proposed for a wide variety
of new interactions on smartphones and smartwatches, such as
authentication using fingers and other body parts [9, 11, 17, 30].
Especially, capacitive images coupled with machine learning (ML)
show great potential and continuously outperform the baseline.
For simple touch prediction, Kumar et al. [21] improved the touch
accuracy by 23% over the baseline using capacitive images and
CNN. Others enabled force touch input without additional sensors
using neural networks [2]. In a similar fashion, Le et al. [22] used
the capacitive image to enable palm touch input. Another approach
presented by Cami et al. [5] used the capacitive image and s on
touch tables to enhance stylus input. They used different hand
poses to activate a range of input modifiers, such as handwritten
input and marking text. Finally, several researchers investigated the
recognition of finger orientation [20, 27, 31, 36, 38, 39]. Remarkably,
the most accurate implementation by Xiao et al. [38] improved
the recognition by using only the built-in sensor of current mobile
devices. Lastly, Mayer et al. [27] further improved these results
using a deep CNN to estimate the fingers’ pitch and yaw angles.
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3 GROUND TRUTH DATA COLLECTION
We conducted a data collection study to train our deep CNN model
to estimate the thumb’s pitch angle. In line with previous work
that also used raw capacitive images [2, 21], we aimed to collect
a wide range of samples. Therefore, we collected samples with
sub-millimeter accuracy at a high frame rate from 16 participants.

For a maximum variety of ThumbPitch inputs, we asked partici-
pants to tap with different angles on the screen and continuously
change the angle without releasing the thumb. We asked partici-
pants to perform input at two different locations; in the center and
at an intersection of the very center capacitive pixel of the capacitive
image, following instructions by [27, 29]. Thus, we recorded four
input modalities (tap vs. continuous × center vs. intersection). The
order was randomized; however, we did not further consider the
modalities in the evaluation as they only serve to capture a wide
input variety, allowing for better generalizability.

3.1 Apparatus
We used an LG Nexus 5 (screen size: 4.95 in) mobile phone to collect
the capacitive images as it provides us with the possibility to read
the capacitive image in real time [23, 28]. In line with prior work
[27, 33], we recorded the ground truth positions and angles of the
finger and phone with a high-resolution motion capture system by
OptiTrack.

We used Flex 3 cameras delivering high-precision marker po-
sitions at 100 FPS. We attached a 3D-printed marker on the right
thumbnail to track the thumb angle and position. In detail, we used
a specially designed 3D-printed marker attached to the participant’s
thumb to track the pitch angle while interacting with the phone.
The 3D-printed marker represents the negative of a fingernail and
fits on top of the participant’s thumbnail without restricting reach-
ability (see Figure 2). We further added three cylinders attached to
infrared reflective markers for optical tracking.

We used a PC for data recording, live visualization, and syn-
chronization, see Figure 2. To retrieve the capacitive images from
the touchscreen, we modified the phone’s kernel as described by
Le et al. [23]. Therefore, we had access to the 27 × 15 8-bit raw
capacitive images of the Synaptics ClearPad 3350 touch sensor with
a frame rate of 20 FPS. Additionally, we implemented a custom app
that instructed participants to repeatedly touch a red crosshair (size:
2×2 cm) to indicate the two positions (center vs. intersection).

3.2 Procedure
We welcomed participants into our laboratory and explained the
data collection study to them in detail. After answering any ques-
tions they had, we asked them to sign an informed consent form.
After asking participants to take a seat in front of our motion cap-
ture system, they filled in a demographics questionnaire. Using body
tape, the experimenter then attached the marker to the participant’s
thumb; see Figure 2.

We asked participants to perform various pitch angles for the rest
of the data collection study to record ground-truth pitch angles via
the motion capture system and the raw capacitive images. During
the recording, participants were asked to hold the phone with their
dominant hand. Whenever participants had difficulties performing

Figure 2: The setup of the data collection study, including
the study phone, the optical reflection markers for tracking,
and the OptiTrack cameras used for position tracking. The
reflection markers are attached to the phone as well as the
thumbs nail for submillimeter-accurate tracking.

inputs, they were allowed to stabilize the phone with their non-
dominant hand.

During the experiment, the experimenter could monitor the
participants’ input progress using the live motion capture data.
Thus, we could inform participants about the pitch angles they
have not performed yet. This further enabled us to record a diverse
dataset. We asked all participants to perform inputs in random
order (tap vs. continuous × center vs. intersection).

3.3 Participants
We recruited 16 participants (6 females and 10 males) from an
internal university volunteer pool aged between 18 and 32 years
(𝑀 = 24.5, 𝑆𝐷 = 3.5). All participants’ dominant hand was the
right hand. No participant had any movement impairments. We
paid 10 EUR per hour as compensation for the study, which latest
approximately 45 minutes.

4 THUMBPITCH ESTIMATION MODEL
In the following, we present the development of the ThumbPitch
estimation model. The resulting CNN regression model takes the
raw capacitive images as input and estimates the pitch angle in
angular degrees between 0◦ (flat finger) and 90◦ (steep finger).

4.1 Dataset and Preprocessing
While we automatically synchronized the capacitive images and
ground truth pitch, the motion capture system has a latency of
around 100 ms. Thus, we manually adjusted the synchronization
using visual inspection of the marker movement and change in
the pixel sum of the capacitive image. Afterward, we performed
a blob detection similar to related work using capacitive images
(e.g., [24, 27, 34]). Next, we cropped the blobs by the center of mass
and pasted them in the upper left corner in an empty 14× 14 image
to counteract CNN translation effects [18]. We chose 14 × 14 as it
is symmetric and the maximum blob plus overhead fits into the
new size. While a larger image would be possible, no variation in
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Figure 3: Ten example touches of one participant with the
white dashed lines representing the ellipse fit.

data occurs in this area, thus, only making it bigger and slower.
Examples of the processed images are shown in Figure 3.

After preprocessing, 233,072 capacitive images from 16 partic-
ipants were ready to train our model. For each capacitive image,
we have the corresponding ground truth pitch angle from the mo-
tion tracking system. Various impacting factors made the resulting
dataset unbalanced, such as recording at 20 FPS, unfamiliarity with
performing the extreme pitch movements [27, 38], and stability
issues [3]. Therefore, we augmented the data by adding Gaussian
distributed noise (𝑀 = 4, SD = 8) to balance all samples within the
training dataset. We did not add noise to the test or validation set
to avoid overfitting toward the noise but balanced the samples in
the training dataset.

4.2 Boring et al.’s [3] Baseline Approach
Boring et al. [3] proposed that the contact size of the thumb can
be used to identify the angle of the finger. In detail, they used the
major radius of an ellipse fitting provided by the iPhone’s API. Thus,
we fitted an ellipse [12] to the capacitive images to estimate the
pitch angle using Boring et al.’s approach [3]. The initial visual
inspections looked promising for an ellipse to determine the pitch
angle, see Figure 3.

Boring et al.’s approach [3] assumes a linear relationship between
the ellipse major and the pitch of the finger. Therefore, we fitted a
line to the ellipse major to understand if this is a good approxima-
tion for the thumb. The linear fit for the ellipse major has a 𝑅2 of
.86, see Figure 4. This suggests an overall low-fitting quality. Using
this linear fit, we can furthermore determine the error on the test
set. The fit results in a RMSE of 17.2◦ with a mean absolute error
of 13.8◦ (𝑆𝐷 = 10.2◦), see Estimation Error in Figure 4.

4.3 Model Training
The goal of our model is to predict the thumb’s pitch based on the
capacitive image; hence, the input is the capacitive image. Dur-
ing model training, we used the ground truth pitch angle that we
recorded using the motion tracking system in our data collection
study. As data representation approaches such as CNNs have been
shown to be more effective for capacitive data than feature extrac-
tion approaches, e.g., [24, 27, 34], we opted to skip this step and
started exploring deep CNN models.
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We used the trial-and-error method [7] combined with a grid
search for hyper-parameters tuning using 8 : 5 : 3 participants, a
common split of about 50%:30%:20%, for the training, testing, and
validation set, respectively. The validation set remains untouched
during the training phase. After testing a wide range of different
architectures, we determined that a CNN with three convolution
layers and two dense layers yields the best results. The final model
structure and the network parameters are depicted in Figure 5.
The dropout layers are set to 0.5 and the CNN kernel size to 3 × 3.
For all layers, we used the ReLU activation function. Additionally,
we found that L2 regularizers after each layer with a value of 0.4
perform the best.

As the loss function, we decided to use a mean-square error
(MSE) function to reduce potential overfitting toward the outlier.
While testing different optimizers, we found that training with an
Adam optimizer yielded the best results. Additionally, we settled
on the following parameters for the optimizer after testing their
impact on the training results: we settled on a learning rate start-
ing from .001 with a reduction by 5% after 10,000 epochs without
improvement and a minimal learning rate of .00001. We used a
batch size of 2,000 and trained the model for 300,000 epochs, which
took approximately nine days on an NVIDIA Tesla V100 to train.

CNN
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CNN + MaxPool + Dropout
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Figure 5: An illustration of the architecture of our CNN re-
gression model to estimate the pitch value.
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Afterward, we performed a warm-start to push our initial results,
a common technique to optimize deep-learning ML models. For
the warm-start training phase, we used an early stopping approach.
The training stopped after an additional 98,945 epochs. We expected
such a long training time due to the low learning rate; however, we
found this leads to more stable results.

4.4 Model Results
Our regression model estimates the thumb’s pitch angle between
0◦ (flat) and 90◦ (steep) based on the raw capacitive image. Our
final model estimates the thumb’s pitch angle with a RMSE of 8.2◦
(MAE = 6.4◦, SD = 5.1◦) on the training set, see Table 1. The model
is accounting for similar results for the test set when keeping in
mind that the test set is not artificially augmented: RMSE = 9.8◦
(MAE = 7.5◦, SD = 6.3◦). Finally, our model achieved an accuracy
on the untouched validation set with RMSE = 11.7◦ (MAE = 9.5◦,
SD = 6.9◦).

4.5 Time Performance
We carried out a performance test on a Nexus 5 phone to determine
the prediction time. We ran 4,000 predictions and measured the
time for the preprocessing and the model prediction itself. The
preprocessing took an average of 10.45 ms (SD = 2.51), and the
model itself another 14.09 ms (SD = 3.51). Because we receive
the capacitive images every 50 ms (20 FPS), we can estimate the
thumb’s pitch for each retrieved capacitive image, allowing us to
run ThumbPitch at maximum performance.

5 USE CASES
We envision that ThumbPitch will enrich touch-based interaction
for a wide range of scenarios. We argue that ThumbPitch can over-
come the limitations of previously proposed interaction techniques
and, for the first time, support not only two-handed but also one-
handed interactions. Moreover, ThumbPitch supports a large input
range compared to 2-level input, such as ForceTouch by Apple and
KnuckleTouch [34]. This allows the user to perform ThumbPitch
in both one-handed and two-handed scenarios, giving the user the
option to use both hands if possible but also enabling interaction in
mobile and encumbered situations, e.g., while carrying a shopping
bag. In the following, we present several use cases in which we
envision ThumbPitch to outperform previously proposed methods
to highlight the possibilities in user interface design.

Table 1: The baseline and model fitting results. All values are
in degrees.

RMSE MAE SD

Baseline by Boring et al. [3] 15.5 12.6 8.9
Our CNN Model – Train Set 8.2 6.4 5.1
Our CNN Model – Test Set 9.8 7.5 6.3
Our CNN Model – Validation Set 11.7 9.5 6.9

5.1 Sliders
Sliders often span across the whole screen and can be cumbersome
for users as they need to stretch their thumb across the whole screen.
Here, we envision ThumbPitch to be an additional input method to
change the slider value. In detail, we envision the thumb’s angle
to be mapped to the slider position. Thus, no change in position
needs to be performed by the user; a simple change in angle will
modify the position and, thus, the input.

5.2 Zoom
Pinch-to-zoom has become a ubiquitous gesture to zoom into maps,
images, and various other content. However, the gesture to zoom
requires two fingers on the screen, which is nearly impossible
in a one-handed interaction. Here, we envision ThumbPitch can
substitute the traditional pinch-to-zoom gesture, enabling easy
zoom interaction even in encumbered and mobile scenarios.

5.3 Drawing
Today, the user either needs external hardware (e.g., Apple Pencil
or Microsoft Surface Dial) or needs to change the settings through
the user interface provided by the drawing app for rich input such
as different stroke colors or stroke width. With ThumbPitch, we
enable an enriched input that allows the user to change various
parameters on the fly. For instance, we envision ThumbPitch to
change the stroke color or stroke width as the thumb angle can be
mapped to the width or color wheel (see Figure 6).

5.4 Context Menu Selection
As phone sizes are increasing, reachability issues are getting more
prominent. We envision an implementation where the thumb’s up
and down movement can be used to scroll through the content
on the screen. Thus, ThumbPitch allows scrolling through menu
items and selecting an option on release without encountering
the reachability issues associated with larger phones. Moreover, it
allows convenient scrolling on devices with small screens, such as
smartwatches.

5.5 Up/Down Pitch Gesture
ThumbPitch can also offer extra dimensions for gestures. As the
thumb range is limited [25], performing gestures with the thumb
can be difficult, especially in one-handed scenarios. Thus, ThumbPitch
can enrich the gestures’ limited vocabulary.

6 EVALUATION STUDY
In this next section, we evaluate ThumbPitch as an additional input
dimension to enrich touch-based interactions. Here, we compared
ThumbPitch against the standard Touch input. Therefore, we im-
plemented three use-cases, which allowed us to acquire in-situ
feedback about using ThumbPitch in Drawing,MapZoom, and Slider
tasks.

6.1 Apparatus
For the first part of the study, we used the same setup as in the first
study: an LG Nexus 5 for capacitive recording and an OptiTrack
system for ground truth touch collection.
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Figure 6: A participant drawing in the validation study using
ThumbPitch.

For the second part, we not only gathered the capacitive images
but also fed them into our new model to predict the thumb’s pitch.
This allows us to implement three use cases: Drawing, MapZoom,
and Slider. We implemented all tasks with ThumbPitch (Pitch condi-
tion) as well as with standard touch interaction (Touch condition).

6.2 Tasks
In the Drawing task, we used the thumb’s pitch as an additional
input to change the stroke width. Here, high pitch values (steep
finger) result in a wide stroke, and low values (flat finger) in a thin
line. In the Touch condition, we added extra buttons to change the
stroke width (see Figure 6).

In the MapZoom task, we asked participants to zoom into three
different cities of their own choice. We implemented the task in
a way that the thumb’s pitch zooms the map, and the thumb’s
movement in the x and y directions changes the map position.
Higher pitch values zoom into the map, while lower pitch values
zoom out.

In the Slider use case, we asked participants to manipulate the
slider value using the thumb pitch. In detail, the app showed a
number between 0 and 20, and participants were asked to set the
slider to the same value. The slider was positioned horizontally, and
the lower values were located on the left end of the slider. Lower
pitch values moved the slider further left and higher pitch values
further right.

6.3 Procedure
We welcomed the participants and explained the study to them in
detail. After answering any questions, we asked them to sign an
informed consent form. We then attached the markers for the first
part. Participants were seated during the whole study.

For the first part, we followed the procedure of the first study.
However, as we wanted to validate the model, we gave no other
instruction other than to vary the pitch as they liked, but if possible,
to explore the full pitch range. After five minutes of collecting
validation data, we moved on to the second part of the study.

In the second part, the participants started either in the Touch or
Pitch condition; the order of the conditions was Latin Square bal-
anced. Within each condition, participants were asked to perform
the three tasks (Drawing, MapZoom, and Slider) in random order.
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Figure 7: The estimation error for ourmodel in the evaluation
study with 12 new participants.

We asked participants to draw a scene of their vacation experiences,
zoom in on three different cities, and put in five values using the
slider. After each condition, participants were asked to fill in a raw
NASA-TLX [14] and a system usability scale (SUS) [4]. We collected
feedback on perceived ease, speed, success, accuracy, and comfort
on a 7-point Likert scale [34].

Finally, we interviewed participants to understand how they
liked the idea of ThumbPitch overall. Afterward, we thanked the
participants again and paid 10 EUR per hour. The study took an
average of 45 minutes.

6.4 Participants
We recruited 12 new participants from an internal university vol-
unteer pool who did not participate in the first study. The partici-
pants (six female and six male) were between 21 and 29 years old
(𝑀 = 24.2, SD = 2.5). No participant had any movement impair-
ments. As in our data collection study, only right-handed partici-
pants took part in this study.

6.5 Results
In the following, we present the quantitative results and subjective
feedback of the ThumbPitch evaluation study. We conducted the
studywith participants who did not participate in the data collection
study to avoid overfitting.

6.5.1 Model Accuracy. We gathered in total of 34,517 new ca-
pacitive images for validation from the 12 new participants in
the evaluation study. The model on the validation dataset from
the second study has a root-mean-square error (RMSE) of 15.38◦
(MAE = 11.90◦, SD = 9.75◦). For comparison, our results are in
line with the angular error results for finger orientation input
(e.g., [27, 38]). Figure 7 shows the estimation for the different inputs.
The model’s estimation can be described as a monotonic growth
(linear fit 𝑅2 = .973), see Figure 7. This improves over our estima-
tion using the contact size, see Figure 4. However, the model under-
or over-estimates the pitch for the close to flat (0◦) and the close to
steep angles (90◦), respectively.

6.5.2 Task Completion Time (TCT). Due to the nature of the tasks
being vastly different, we conducted three independent tests for the
TCT, see Figure 8a. We log-transformed all times before performing
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Figure 8: a) shows the TCT for the three different tasks. b)
shows the absolute errors on the Slider input.

a t-test as three Shapiro-Wilk tests revealed that the times are
normally distributed (Slider:𝑊 = .957, 𝑝 = .381; Draw:𝑊 = .962,
𝑝 = .499; and Map:𝑊 = .946, 𝑝 = .218). The t-test revealed only
a significant difference for Slider (𝑡 (11) = −6.207, 𝑝 < 0.001). On
the other hand, both Draw and Map tasks showed no significant
difference (𝑡 (11) = −1.731, 𝑝 = .112; 𝑡 (11) = −0.267, 𝑝 = .794,
respectively).

6.5.3 Slider Error. The results show that the slider error was larger
when using ThumbPitch. The Shapiro-Wilk tests revealed that the
data were not normally distributed; thus, we performed a Wilcoxon
signed-rank test (𝑊 = .853, 𝑝 < .003). The test revealed that touch is
significantly less error-prone in comparison to ThumbPitch (𝑉 = 0,
𝑝 < 0.004). Thus, we conclude that Touch (𝑀 = .6, SD = 1.1) is
more precise than ThumbPitch (𝑀 = 2.4, SD = 3.7), see Figure 8b.

6.5.4 Subjective Feedback in Realistic Scenarios. In the three sce-
narios of the evaluation study, we asked participants to complete
an SUS questionnaire [4], raw NASA-TLX questionnaire [14], and
the subjective perception by Le et al. [22]. The qualitative results

Table 2: The quantitative results for the three tasks split by
condition: Touch and ThumbPitch. Raw NASA-TLX on a 21-
point scale (0-20), the SUS on its’ standard scale from 0 to
100, and the subjective perceptions (7-point Likert scale) as
described by Le et al. [22]. The results of the normality test
(Shapiro-Wilk-Tests) as justification for t-tests, as well as t
and p-values, are present.

Touch ThumbPitch norm. t-test

M SD M SD W p t(11) p

TLX [14] 4.6 3.8 9.2 4.6 .930 .098−4.490 <.001

SUS [4] 77.4 24.4 54.1 25.7 .976 .802 4.185 <.002

Easiness 5.5 1.8 4.0 1.7 .946 .221 2.955 <.014
Speed 5.5 1.8 3.6 1.6 .927 .083 4.667 <.001
Success 5.3 1.9 3.4 1.7 .952 .307 4.703 <.001
Accuracy 4.8 2.1 3.1 1.7 .928 .088 4.330 <.001
Comfort 5.4 1.6 3.8 1.7 .940 .169 4.020 <.002

overall showed that normal touch input was easier to perform than
the ThumbPitch, see Table 2.

Eight participants rated in favor of ThumbPitch while four were
conservative about having ThumbPitch in their next device (Pro:
P1, P4 - P7, P9 - P11 vs. Con: P2, P3, P8, P12). The favorite “killer”
feature was the map zoom capabilities (P1, P3, P5 - P7, P9 - P11).
Participants reported that ThumbPitch is intuitive (P11), attractive
(P1, P4, P7), and easy (P1, P4, P6 - P8). P5 summarizes that “you can
use your phone with only one hand.” Four participants commented
on the extended possibility of controlling their devices, allowing
them to use their devices better (P1, P3, P5, P11). Five participants
(P1, P5, P9 - P11) said that they would not use it in all situations
as the input only works with the thumb. While this is true, this is
the purpose of ThumbPitch. Here, the participants picked up on a
second intended feature of ThumbPitch, as they commented on the
improved ergonomics. In detail, they said that ThumbPitch allows
them to move the thumb less across the screen (P1, P2, P8, P10).
Six participants said that they were unfamiliar with ThumbPitch
and, therefore, it was difficult to perform at first but they think they
could adjust to the input (P2 - P4, P6, P7, P10). For P8, for instance,
this was a reason not to like ThumbPitch: “I’m not used to using
my thumb, so I didn’t like it very much.” Additionally, we received
comments regarding poor accuracy (P5 - P9). Three participants
(P2, P3, P11) did not like the implementation of our use case.

Finally, our participants envisioned scrolling through word se-
lection and other keyboard operations (P1, P4, P8). More specific
use cases were for games, e.g., Tetris (P6, P10), and general scrolling
(P5). Finally, participants envisioned ThumbPitch for gestures, e.g.,
locking the screen and volume control (P10 - P12).

7 DISCUSSION
We conceptualized, implemented, and evaluated ThumbPitch to
enrich one-handed touchscreen interactions. Hereby, we extend
over the existing FatThumb [3] approach, which relays on the
ellipse major. With ThumbPitch, we can determine the pitch of the
finger in a more precise manner by using raw capacitive images.
Moreover, in contrast to the FatThumb approach [3], which needs
a one-time calibration step, our accuracy results show that our
approach generalizes across participants. Moreover, we can estimate
the full 90◦ input, allowing for continuous input instead of a stepped
approach, which is mostly limited to two or three different input
categories. Here, we have a smooth transition between neighboring
inputs, highlighted by an 𝑅2 value of .97 (see Figure 7) in contrast to
the baseline approach, 𝑅2 = .69 (see Figure 4). Thus, our approach
results in a smoother input and no sudden jumps in pitch angle
estimation.

Overall, we received positive responses from the evaluation
study, as eight participants would want to have this feature on
their next phone. However, as expected, the quantitative feedback
did not turn out in favor of ThumbPitch; this is in line with related
work introducing new interaction techniques (e.g., [22, 34]). This
was further addressed by participants of the second study, where
they mentioned that they were unfamiliar with using ThumbPitch
and would require more time to become accustomed to the new
interaction possibility. This impacts the results compared to touch
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interaction, which all users use every day on their devices. More-
over, while the SUS seems to be low initially, we stress that it is
essential to compare it to the traditional baseline, which is low.
Thus, we argue that this indicates that the participants rated the
task itself (draw, map, and slider), which impacted the SUS results
even more. While the draw and map tasks resulted in similar re-
sults for TCT, the ThumbPitch slider did not follow this trend. After
analyzing the differences, the main problem was the lift-off after
the participants selected the right position. Our current ML model
does not adjust for the touch-up phase. However, we argue that a
simple time offset could already reduce this issue. Alternatively, as
the capacitive matrix is already exposed to the model, it should be
extended to an LSTM model, e.g., [34]), which can then also detect
touch-up events for ThumbPitch input.

Considering only the accuracy, our evaluation study with 12 new
participants revealed that the MAE was only 0.20◦ larger than the
validation dataset of the first study. Given that the validation dataset
contains only three participants and the new dataset contains 12
different participants, we argue that the error is consistent, and the
ML model is not subject to overfitting. In terms of accuracy, we
achieved a remaining error of around 10◦; this error is similar to the
error for finger orientation input (e.g., [27, 38]). While the absolute
error is an impotent indicator, if a system can work ultimately, then
only usability testing can determine if users can interact with a
system. Therefore, we conducted a validation study as the second
part and included three specific tasks to get the users’ feedback. We
can confirm that participants could perform different tasks with
the given accuracy.

With ThumbPitch, the fear of dropping the phone arises, espe-
cially as phones become more expensive. However, Bergstrom-
Lehtovirta and Oulasvirta [1] already showed a large interaction
range of the thumb on the screen, and Le et al. [24] extend this
finding for one-handed scenarios while walking. Thus, we argue
that the risk will be minimal. However, while studying ergonomic
constraints of ThumbPitch is outside of this paper’s scope, we intend
to formally study its ergonomic effects and the risk of the device
dropping in the future.

8 OPEN SOURCE
To permit others to use our implementation, as well as facilitate
replication and others wishing to explore and extend our approach,
we have open-sourced our datasets, model, and training script at
https://github.com/sven-mayer/thumbpitch.

9 CONCLUSION
This paper presented ThumbPitch, a continuous input dimension
for touch-based devices that targets especially one-handed interac-
tion scenarios. We achieve this by utilizing additional information
from capacitive images, which today’s touch controllers ignore.
This allows deploying our model on today’s touch devices through
a simple software update. Further, we provide a ready-to-deploy
machine learning model to estimate the thumb pitch angle. This
allows other researchers to build on this work directly.

In the future, we plan to run an in-the-wild study in which we
hand out ThumbPitch-enabled phones to new participants. As we
cannot modify in-app functions, we plan to deploy a gesture layer

on top of the operating system to enhance interaction. However,
in the long-term, we hope that manufacturers adopt the feature
as we found that ThumbPitch offers a true alternative to pinch-to-
zoom and offers a high potential to enhance touch interaction in
the future.
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