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Figure 1: This paper explores the limitations of current Mixed Reality (MR) experiences and how physiologically-adaptive
systems can optimize interactions and enhance user experiences in various domains, such as healthcare, education, and
entertainment. Physiologically-adaptive systems have the potential benefit of providing users with more personalized and
engaging experiences. However, addressing ethical and privacy concerns is a fundamental issue in the HCI community when
dealing with implicit systems and inputs over which users have limited control.

ABSTRACT
Mixed Reality (MR) allows users to interact with digital objects
in a physical environment, but several limitations have hampered
widespread adoption. Physiologically adaptive systems detecting
user’s states can drive interaction and address these limitations.
Here, we highlight potential usability and interaction limitations
in MR and how physiologically adaptive systems can benefit MR
experiences and applications. We specifically address potential ap-
plications for human factors and operational settings such as health-
care, education, and entertainment. We further discuss benefits and
applications in light of ethical and privacy concerns. The use of
physiologically adaptive systems in MR has the potential to revo-
lutionize human-computer interactions and provide users with a
more personalized and engaging experience.
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1 INTRODUCTION
Mixed reality (MR) systems encompass a broad spectrum that spans
from physical reality to virtual reality (VR), including instances
that involve overlaying virtual content over physical one, i.e., Aug-
mented Reality (AR), as well as those that use physical content
to enhance the realism of virtual environments, i.e. Augmented
Virtuality (AV) [57]. These instances are typically predefined for a
seamless physical and virtual content blend.

MR enables users to interact with digital objects in a physical
environment, resulting in immersive and engaging experiences.
However, several limitations have hampered the widespread adop-
tion of MR technology [35, 54]. In recent years, researchers have
begun to investigate the use of physiologically adaptive systems to
address these limitations by developing systems that can respond
in real-time to the user’s physiological state [3].

Physiologically adaptive systems belong to a group of adaptive
systems that employ physiological signals to generate personalized
and captivating experiences. They are based on user’s physiological
signals as a form of input, such as peripheral measures, e.g., elec-
trocardiogram [42] or electrodermal activity [7], and central physi-
ological measures, such as electroencephalography (EEG) [6, 60],
and Functional near-infrared spectroscopy (fNIRS) [1] produce real-
time feedback and responses based on the user’s physiological state.
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Physiologically-adaptive systems are based on classic control the-
ory [63]. This theory involves three main steps: physiological data
acquisition and processing, transformation into a system response,
and shaping the expected psychophysiological response from the
user. These so-called "Biocybernetic control loops" [8, 14] employ
a negative control to detect deviations from the optimal state and
prompt changes in the system to encourage a desirable user’s state.
This process is crucial in creating a responsive and personalized
experience for the user.

Considering that physical and virtual reality are the two ex-
tremes of the MR continuum, this provides a favourable setting
for developing adaptive systems. Adaptive systems can tailor the
MR experience to the user’s needs and goals by leveraging this
continuum, assisting them in achieving optimal performance [9],
immersion [20], and engagement [12].

This paper aims to investigate the potential applications of phys-
iologically adaptive systems in MR and discuss their advantages
and disadvantages. We will specifically look at the benefits of phys-
iologically adaptive systems in addressing the limitations of MR
technology and discuss their potential applications.

First, we review the definition of MR and its various forms. We
will also look at the current limitations of MR technology and the
issues that must be addressed to improve its usability and effec-
tiveness. We will then define physiologically adaptive systems and
discuss their characteristics and potential benefits.

Second, we discuss potential applications of physiologically adap-
tive systems in human factors and applied MR settings. For example,
healthcare professionals can use such systems to create more engag-
ing and effective patient therapies by providing real-time feedback
and support based on the patient’s physiological state. By adapting
to the student’s cognitive and physiological state, these systems
can be used in education to create more immersive and engaging
learning experiences. By adapting to the player’s physiological state
and creating more personalized and engaging experiences, these
systems can be used in entertainment to create more engaging and
immersive games and simulations.

Finally, we highlight challenges for physiologically adaptive
systems in MR, including technical and theoretical constraints and
ethical and privacy concerns. We discuss potential solutions and
strategies for dealing with such fundamental issues.

2 MIXED REALITY
The predominant definition ofMR is the one provided in the seminal
work by Milgram and Kishino [35], referring to the merging of real
and virtual worlds in a seamless and interactive environment. It is
an interaction spectrum that blends physical and digital realities to
create a new, immersive experience for the user.

Recently, this perspective has been reviewed by Skarbez et al.
[54]. Their revised taxonomy consists of three dimensions: im-
mersion, coherence, and extent of world knowledge. Immersion
is determined by a system’s objective hardware device specifica-
tions and is related to the feeling of spatial presence experienced
by the user [55]. Coherence refers to the conformity of different
sensory information perceived during an XR experience, leading to
an increased plausibility illusion of the experience [53]. The extent
of world knowledge describes the degree of reality incorporated

into an MR experience, influencing the user’s real-world awareness
[36]. The authors focus on immersion and coherence and consider
important environmental cues that influence the extent of world
knowledge.

Latoschik and Wienrich [31] provide a third perspective that
emphasizes that congruence activations between cognitive, percep-
tual, and sensory layers contribute to MR plausibility. The authors
argue that device specifications, like the field of view or resolution,
impact device-specific sensory congruence, while content trans-
parency affects congruence. These congruences ultimately affect
the plausible generation of spatial cues and spatial presence.

2.1 Current Limitations for MR Systems
Adoption

Despite technical and design advancements in Mixed Reality (MR)
technology, significant limitations still prevent it from reaching its
full potential and adoption by the general public and profession-
als. Now, we highlight four main factors that contribute to such
limitations.

First, a limited field of view (FoV) represents an initial issue in
many MR systems. FoV is the area that the user can see through
the display, and it is often constrained by the physical size of the
device’s screen or lenses [17]. A limited FoV can reduce immersion
and realism and lead to visual discomfort [49], especially when the
user must frequently turn their head to view the content [50].

Secondly, we identify limited interactivity as a primary con-
straint for MR adoption. MR systems often rely on gesture recogni-
tion or voice commands [24], which can be imprecise and unreliable,
leading to frustration and reduced user engagement. This limitation
can be a significant barrier to adopting MR in some domains, such
as entertainment applications [59], i.e., gaming or when this adds
up to an existing cognitive load, such as in education settings [51].

Third, while modern MR devices can display highly detailed vir-
tual content alone, their embedding into physical reality hinders the
efficiency of their plausibility [37], ultimately leading to reduced
realism. On the contrary, high levels of realism can strengthen the
efficiency of training simulations [18]. Still, on the other side, when
increasing details and amount of virtual content, we implicitly im-
pact theMR visual complexity [43] that has been shown to influence
behavioural performance and physiological arousal [34, 45, 49].

Finally, limited adaptability is another significant limitation of
MR systems. Many MR applications are pre-defined and cannot
adapt to the user’s changing needs or physical state. This limitation
can reduce the effectiveness of MR applications and lead to reduced
user engagement and long-term usage.

3 PHYSIOLOGICALLY-ADAPTIVE SYSTEMS IN
MR

Physiologically-adaptive systems are systems designed to interact
with and respond to the physiological states and changes of the hu-
man body. These systems typically employ sensors and algorithms
to monitor and analyze physiological signals such as ECG, EDA
and EEG to drive interactions towards a specific state based on the
cybernetics approach [61]. The cybernetics approach found various
applications ranging from developing new control channels [38]
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Figure 2: In a biocybernetic control loop, the Adaptive System continuously process, and extract informative features from the
physiological signals and detect the user state based on an algorithm. Thus, it adjusts its behaviour for device control for diverse
applications and provides returns feedback to the user. This closed-loop allows for iterative adaptations and optimization of
visualization, content and interaction.

to task adaptation in response to changes in workload [47] and
motivation [13].

However, most of the work focused on desktop settings. Only
recently, MR settings are proliferating and enabling the creation of
environments and interactions far more engaging and expressive
than traditional desktop programs [19, 48].

MR is now one of the most favourable environments for physi-
ological computing systems. MR enables online adjustments and
adaption of visualizations, digital content, blending, and interac-
tions that resemble real-world ones. However, it is not currently
feasible in physical settings (VR) or augmenting them (AR, AV). In-
troducing physiological interaction into MR can increase its ability
to monitor and adapt to implicit human behaviour. Physiologically
adaptable MR systems can identify user states and direct inter-
action characteristics toward a (shared) objective depending on
physiological input.

3.1 Benefits of Physiologically-Adaptive
systems for MR

With regard to the limitations of MR adoption, we identify how
physiologically-adaptive systems can enhance MR interaction and
address possible usability constraints.

While the limited field of view (FoV) in MR devices is primarily
a hardware limitation that may be challenging to address through
physiological adaptivity alone, monitoring attention and gaze can
still play a role in enhancing the user experience within the existing
FoV limitations. Physiological inputs such as eye gaze and torso
movements and their temporal alignment can be employed for
attention, interest, and intent detection and as context and input
[52]. Moreover, EEG features such as alpha and theta oscillations

discriminated between internally and externally directed attention
in AR [62] and VR settings [33]. This information can be used to
dynamically adjust the field of view of the MR system, for example,
by zooming in on areas of interest, providing multisensory cues
to direct attention towards hidden areas, and blurring distracting
information.

Limited interactivity refers to situations where the user has
limited ability to control or manipulate the virtual objects in the MR
environment. This can occur due to factors such as the complexity
of the interface or the user’s cognitive workload.

Limited interactivity can benefit from neuro-, and electrophysio-
logical measures such as EEG and fNIRS for workload [10, 27], and
attention detection [56], enlarging the design space for interaction.
For instance, if the user is experiencing cognitive overload or bore-
dom [13], the system can simplify the interface or adjust the task
difficulty level to maintain engagement and interest. Additionally,
if the user is experiencing unpleasant states such as frustration or
anxiety [32], the system can distract the user with positive stim-
uli to distract from their emotional state [58] and maintain their
attention on the task [16].

Third, the limited realism could be controlled and adapted based
on autonomic arousal, i.e., EDA or ECG, for leveraging its effect
on the user’s physiological activation. This physiological input can
be used to adjust the level of MR visual fidelity, for example, by
adding or removing sensory cues to enhance the user’s emotional
experience [4, 29], or support target detection, when engaged in
visual search [5, 23].

Lastly, physiologically-adaptive systems are central to increasing
reactivity and adaptability. Employing physiological data as a pas-
sive input and concurrently adapting either task or environmental
features can allow for more dynamic interaction, controlling for
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undesirable states such as anxiety or boredom [3, 44], improve moti-
vational engagement [13], and therefore allowing users to maintain
focus on the current task and perform optimally.

3.2 Potential Applications of Physiologically
Adaptive Systems in Applied MR Settings

This combination of implicit physiological monitoring and MR en-
vironment adaptation can be defined as a closed-loop model. Since
their original conception and design in the seminal work of Pope et
al. [46], biocybernetic closed loops have had many implications in
human factors, and applied settings, such as aviation [21], health-
care [41], and other high-demanding environments [47].

We envision three operational settings where physiologically-
adaptive MR environments can be profitable: healthcare, education,
and training.

Physiologically adaptive systems in the healthcare industry can
deliver customized therapies suited to the patient’s psychophysio-
logical condition. Physiological measures, for example, can be used
in mental health to assess physiological signals related to stress,
anxiety, and depression. Such information improves the patient’s
exposure therapy, leveraging the degree of realism or intensity of
the phobic stimuli presented either in VR or in AR [30]. Similarly,
adaptive systems may be used in physical therapy to monitor pa-
tients’ progress and offer real-time feedback on their movements,
allowing therapists to change the intensity of exercises to guarantee
optimal recovery and rehabilitation [2, 11].

In educational settings, physiologically adaptive systems can be
used to improve learning outcomes. Recently, many companies and
educational institutions have allocated considerable resources to
transitioning from traditional desktop education to immersive MR
applications, expecting that a higher level of immersion would cor-
respond to increased motivation and learning. Physiological moni-
toring can aid in technology-based educational decision-making
to assist cognitive, i.e., information processing [64], emotions,i.e.,
frustration [26], and motivation and metacognitive [13], i.e., self-
regulation behaviours of learners [25]. Related to educational set-
tings are also the professional training MR environments [65].

Finally, the entertainment industry can benefit from the design of
physiologically-adaptive games [40]. Besides adjusting the game re-
alism to support immersion [28] or employing dynamic difficulty ad-
justments [39], adaptive gaming can pursue and drive interactions
towards less socially acceptable goals. For example, Moschovitis and
Denisova [39] showed how they could increase game engagement
using a biofeedback-controlled game that elicited physiological
responses associated with fear and anxiety. Their results show how
stimuli perceived as unpleasant on the surface might result in a
positive subjective outcome. Finally, gamification approaches can
benefit entertainment purposes and be applied and generalized to
different settings, such as therapy, treatment of anxiety and cogni-
tive rehabilitation and training.

4 ETHICAL AND PRIVACY CONSIDERATIONS
FOR IMPLEMENTING PHYSIOLOGICALLY
ADAPTIVE SYSTEMS IN MIXED REALITY

Within our perspective endorsing a progressive implementation
and investigation for physiologically adaptive systems in MR, we

have to foresee downsizes and considerations regarding ethics and
privacy.

One of the primary ethical considerations for systems that em-
ploy data over which users do not have complete explicit control is
the issue of informed consent. Users must be fully aware of how
physiological data are collected, used, and shared. This is relevant
when their data are employed for model training and validation.

Secondly, physiological states can underlie different emotional
valences, implying that such systems might manipulate or influ-
ence users’ emotions. Therefore, researchers must prioritize ethical
design and inform participants about which state the system is
optimizing for. Lastly, they should allow participants to return to a
neutral affective state if users perceive their final state as undesir-
able. This is critical as users must retain control over the adaptation
and state adjustment process.

Third, privacy concerns are associated with physiologically adap-
tive systems in MR. This perspective was already raised by Fair-
clough [15], highlighting how symmetrical interaction and adapta-
tion between systems and users might lead to asymmetrical data
usage and protection. Again, Hancock and Szalma [22] highlight
that if a physiological computing system respects data protection
rights, individuals should retain formal and legal ownership of
their psychophysiological data. This implies that any third party
should receive access to such information only with approval by
the user. This is relevant considering that physiological data might
not only underlie specific cognitive or affective states and be used
for medical diagnostic purposes.

An initial compromise solution is using a privacy-by-design
approach by embedding privacy considerations into every stage
of the design and development process. This includes conducting
privacy impact assessments, implementing privacy-enhancing tech-
nologies, and using privacy-preserving data collection in every
implementation stage of the physiologically-adaptive systems.

5 CONCLUSION
In conclusion, MR technology holds great potential for creating
immersive and engaging experiences, especially when employing
physiologically adaptive systems that allow users to interact with
personalized visualizations, contents and interactions. We high-
lighted how MR experiences could overcome challenges and limita-
tions by embedding biocybernetic paradigms in their systems and
depicted future concerns for their implementation. HCI, MR, and
adaptive systems research fields can all benefit from the enormous
potential of adopting and exploring physiological computing and
interaction paradigms. However, such opportunities will only be
realized if these fundamental difficulties are addressed by present
research in this area.
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