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Figure 1: We highlight the current challenge of blinks in eye-tracking data for interactive systems and showcase various ways
literature has tried to deal with this. However, for most of the identified work, we show that this is less than optimal and that
these publications do not correctly consider the artifacts introduced by eye-lid movements before and after a blink.

ABSTRACT
Eye tracking is the basis for many intelligent systems to predict
user actions. A core challenge with eye-tracking data is that it
inherently suffers from missing data due to blinks. Approaches
such as intent prediction and user state recognition process gaze
data using neural networks; however, they often have difficulty
handling missing information. In an effort to understand how prior
work dealt with missing data, we found that researchers often
simply ignore missing data or adopt use-case-specific approaches,
such as artificially filling in missing data. This inconsistency in
handling missing data in eye tracking hinders the development of
effective intelligent systems for predicting user actions and limits
reproducibility. Furthermore, this can even lead to incorrect results.
Thus, this lack of standardization calls for investigating possible
solutions to improve the consistency and effectiveness of processing
eye-tracking data for user action prediction.
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1 INTRODUCTION
Eye tracking has become an essential component of intelligent sys-
tems, providing valuable information for predicting user actions.
Despite its importance, eye-tracking data, mainly when acquired
in the wild, is inherently plagued by missing information due to
blinks, making it impossible for today’s neural network approaches
to predict user intentions accurately. Therefore, today’s methods all
require additional pre-processing steps for the handling of missing
data. We can find a set of established methods for blink detection.
When looking into how to handle the blinks, literature is less stan-
dardized as researchers often employ use-case-specific approaches
to deal with these gaps in data. Thus, we argue there is currently
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no standardized approach to handling missing eye-tracking data
for intelligent systems.

Past research has attempted to address this challenge by adopting
use-case-specific approaches, such as removing parts of data that
include missing data or artificially filling it in, e.g., [Stein et al. 2022;
Wang et al. 2021]. However, this lack of consistency in handling
missing data presents a significant challenge, and a more standard-
ized solution is needed to ensure the accuracy and effectiveness
of intelligent systems for user action prediction. This issue high-
lights the importance of developing a comprehensive and consistent
approach to processing eye-tracking data.

We searched for relevant papers to understand how researchers
have dealt with missing data in eye tracking to combat this issue.
In this work, we highlight several different use-case-specific ap-
proaches and demonstrate the need to standardize data processing
techniques. We also speculate about the impact a standardized way
of pre-processing could have on interactive systems. Improper han-
dling of blinks and missing data can result in inaccurate and incon-
sistent predictions, as well as distorted data analysis. Furthermore,
the lack of a standardized approach to data processing presents a
significant challenge to the reproducibility and comparability of
results across different studies. Therefore, it is crucial to establish
a comprehensive and consistent approach to pre-processing eye-
tracking data to ensure the reliability and validity of intelligent
systems for user action prediction.

2 RELATEDWORK
First, we provide a short overview of the reasons for blinks and
how blinks are used in interactive systems for human-computer
interaction (HCI). Next, we provide insight into different ways of
blink detection. For the final part of our related work, we provide
more cases of the use of eye tracking in interactive systems.

2.1 Reasons for Blinks
Blinks are a natural and essential part of human visual perception
and are defined as the rapid closure and reopening of the eyelids.
They typically last between 100 and 400 milliseconds and occur
spontaneously, approximately every 2 to 10 seconds, depending
on various factors, such as age and environment [Fatt and Weiss-
man 2013]. While blinks are crucial for maintaining ocular surface
health and protecting the eyes from damage caused by airborne par-
ticles [Stern et al. 1994], excessive light [Patel et al. 1991], and other
environmental factors, they also pose a challenge for eye-tracking
systems.

Blink data can also be used to assess cognitive and perceptual
processes in a variety of domains, such as neuroscience, psychol-
ogy, and ophthalmology. As an example of this, researchers have
used blink frequency to examine attentional processing, including
selective attention, inhibition, and cognitive load [Tsai et al. 2007;
Wolkoff et al. 2005]. In ophthalmology, blink rate has been used
as an index of corneal sensitivity and tear film quality. Further-
more, blink dynamics can be used to diagnose and monitor various
neurological and neuromuscular disorders, such as Parkinson’s dis-
ease [Bek et al. 2020], myasthenia gravis [Nguyen et al. 2022], and
Tourette’s syndrome [Shaikh et al. 2017]. While accurately captur-
ing blink data is critical for drawing meaningful inferences and

diagnosing these conditions, blinks are influenced by many factors,
which can heavily impact the accuracy of these systems.

2.2 Impacting Factors on Blinks
Various factors can impact how blinks manifest. However, blink
frequency and blink duration are the two variables that characterize
blinks most predominately.

2.2.1 Blink Frequency. Various factors, including age and gen-
der [Zhan et al. 2020], as well as environmental conditions, and
cognitive load, influence blink frequency. For example, younger
children blink much less frequently than adults, with blink rates
increasing gradually from infancy through early childhood, after
which it decreases again with age [Marandi and Gazerani 2019;
Stern et al. 1994]. Women tend to blink more frequently than men.
Environmental factors such as lighting conditions, air quality, and
screen usage can also impact blink frequency. Prolonged screen
use, in particular, can cause a decrease in blink frequency [Patel
et al. 1991], leading to symptoms such as dry eyes and eye strain.
Furthermore, cognitive load, such as engaging in a demanding task,
can cause a reduction in blink frequency [Tsai et al. 2007; Wolkoff
et al. 2005]. These factors can vary across individuals and situations,
highlighting the importance of understanding the context in which
blinks occur to model and interpret eye-tracking data accurately.

2.2.2 Blink Duration. Blink duration is another important factor
to consider in eye-tracking research. Blink duration is affected by
many of the same factors that influence blink frequency, includ-
ing age, gender, environmental conditions, and cognitive load. On
average, blink durations range from 100 to 400 milliseconds [Fatt
and Weissman 2013], but they can vary widely. For example, blink
duration tends to be longer in older adults and shorter in younger
adults. Environmental factors such as lighting and screen usage can
also impact blink duration. Prolonged screen use can cause a de-
crease in blink frequency and an increase in blink duration, which
can contribute to symptoms such as dry eyes and eye strain. Fur-
thermore, cognitive load can influence blink duration, with longer
blinks being associated with more demanding tasks. Understanding
these factors is crucial for accurately interpreting blink data and
improving the performance of eye-tracking systems.

2.2.3 Additional Factors. The four factors below are additional
characteristics of blinks. Inter-blink interval: The time between
blinks can also be influenced by various factors, such as mental
workload [Wilson and Russell 2003], fatigue [Ousler et al. 2002], and
emotional states [Keil et al. 2006]. Blink asymmetry: Studies have
shown that the timing and duration of blinks can differ between
the left and right eyes, which may be related to differences in
motoneuron excitability [Kassem and Evinger 2006]. Blink rate
variability: While the average blink rate is an important metric, the
variability in blink rates can also provide valuable information about
cognitive [Paprocki and Lenskiy 2017] and emotional states [Godin
et al. 2015]. Blink patterns: In addition to duration and frequency,
the pattern of blinks (e.g., regular, irregular, spontaneous) can also
provide insights into cognitive processes [Jongkees and Colzato
2016] and attentional states [Lawson et al. 1998].
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2.3 Blink Detection Methods
Various methods have been proposed for detecting blinks in eye-
tracking data, ranging from intrusive to non-intrusive techniques
[Holmqvist et al. 2011]. Intrusive methods include using electrodes
placed around the eyes, such as electrooculography (EOG) [Tamba
et al. 2014]. However, these methods can be uncomfortable and may
disrupt their natural behavior. In contrast, non-intrusive methods
use cameras to track eye movements, either with or without addi-
tional illuminators. Examples of non-intrusive methods include the
use of infrared cameras, which can detect pupil movement even in
low-light conditions, or using visible light cameras to track facial
features such as the eyes and eyebrows [Fejtová et al. 2004]. In the
following section, we will discuss some of the most widely used
non-intrusive blink detection approaches in eye-tracking systems.

Some eye tracking systems, such as the EyeLink 1000 Plus1 (SR
Research Ltd., Ottawa, ON, Canada), have built-in blink detection
algorithms that are designed to identify blinks automatically. Their
algorithm offers a blink detection method whereby a blink is de-
fined as periods of eye-position data in which the pupil size is
notably small or when the pupil in the camera image is missing or
severely distorted due to eyelid occlusion. The parser senses partial
occlusions of the pupil preceding and following a blink, which is
then marked as a saccade. The parser recommends discarding fixa-
tions lasting less than 100 milliseconds before and after a blink to
minimize the effect of blink-related artifacts. These procedures are
detailed in their manual.

Another built-in blink detection method comes from the BeGaze
parser2, developed by SensoMotoric Instruments GmbH in Toltow,
Germany. It incorporates a pre-built blink detector that identifies
blink events as a particular type of fixation where the pupil diam-
eter is either zero or outside a dynamically computed valid pupil
range. The blink event is expanded to include this period, which is
determined based on changes in pupil diameter to account for the
transition period between valid gaze data and a blink. If the pupil
diameter exceeds an internal threshold value, the system considers
this period to be part of the blink. The processing discards blink
events that are shorter than 70 milliseconds.

Compared to built-in methods, custom blink detection mod-
els have been proposed in recent years as an alternative. Various
publications have demonstrated the effectiveness of these models,
e.g., Al-Hindawi et al. [2022]; Appel et al. [2016]; Królak and Stru-
miłło [2012]. One example is the blink detection method proposed
by Al-Gawwam and Benaissa [2017], which uses facial features
from a video sequence instead of specifically looking at the eyes,
making it robust against various illumination and facial expressions.
Another example is the model developed by Hu et al. [2020], which
uses pictures from eyes to classify for a blink or not using AdaBoost
and ANN. Although these methods offer novel approaches to blink
detection, they are all RGB-camera-based and cannot be applied to
data collected with existing eye trackers.

2.4 Interactive Systems
Gaze-based interaction techniques have been widely used in var-
ious interactive systems, such as target selection [Li et al. 2021],

1https://www.sr-research.com/eyelink-1000-plus/, accessed June 2, 2023
2https://www.dpg.unipd.it/sites/dpg.unipd.it/files/BeGaze2.pdf, accessed June 2, 2023

navigation [Giannopoulos et al. 2015], and input via gaze gestures
[Drewes and Schmidt 2007]. For instance, intentional blinks have
been shown to be a feasible technique for menu navigation in
high-risk scenarios like air traffic control [Traoré and Hurter 2016].
Similarly, dwell time has been a popular input method for gaze-
based interaction, allowing users to select items or navigate menus
by fixating on the target for a specific duration. Compared to tradi-
tional input methods like a mouse, eye tracking-based input with
dwell time has been shown to perform better in selecting visual
targets [Alonso et al. 2013; Komogortsev et al. 2009].

Predicting gaze behavior in interactive systems is another area
of interest, as it can enable the evaluation and improvement of
these systems without requiring a human user. Saliency maps and
task-specific models like EZ Reader have been used to predict gaze
behavior in various settings, such as short videos and virtual reality
(VR) environments [Feng et al. 2013]. Predicting gaze in short videos
can be used for interactive media applications like customized ad-
vertisements, while gaze prediction can be used to pre-render scenes
in VR to improve the user experience [Xu et al. 2018] or to support
next action prediction [Zhang et al. 2022].

3 LITERATURE SEARCH
We identified several ways of blink detection methods applied in
related work, which we found through our search. While for the
SMI and EyeLink trackers, there are exciting parsers available, most
of the identified literature simply reports on the missing data be-
ing the detector for an indication of a blink. For example, Li et al.
[2020] reported onmissing data using the EyeLink and others [Bhat-
tacharya et al. 2020; Keshava et al. 2020; Koskinen and Bednarik
2020] report on missing data from SMI eye tracker. As such, we
identified that the blink detection methods do not leverage the avail-
able parsers, and improving this has the potential for a positive
impact on research quality.

Although various solutions for detecting blinks and handling
missing data have been proposed, there are no readily available
solutions integrated into the current eye-tracking pipeline. Since
eye-tracking data is a time-series, traditional imputation methods,
such as replacing missing data with the mean or median, are not
appropriate for handling missing data caused by blinks. Therefore,
the majority of previous studies identified with our search have
resorted to removing the data containing blinks. Nevertheless, al-
ternative methods for handling missing data caused by blinks have
been explored in the literature, such as interpolation and imputa-
tion. Despite being less commonly used, these approaches have the
advantage of preserving the applicability of eye-tracking data in
interactive systems.

3.1 Remove
Most of the identified literature on blink detection and handling
involves removing the data that contains blinks. However, some
studies have proposed criteria for retaining the blinks in the data.
For instance, Ishii et al. [2013]; Nakano and Ishii [2010] remove data
when blinks last longer than 200 milliseconds, while they merge
data before and after the blink if it is shorter than 200 milliseconds.
Similarly, Bixler and D’Mello [2021] allow for up to 20% of the data

https://www.sr-research.com/eyelink-1000-plus/
https://www.dpg.unipd.it/sites/dpg.unipd.it/files/BeGaze2.pdf
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points to be missing during a specific time period, whereas Gwizdka
[2014] excludes trials where gaps in data are longer than 1 second.

3.2 Interpolate
Interpolation is a frequently employed technique for replacing the
gaps in the data introduced by blinks, as reported in the identified
literature. The work utilized various forms of interpolation, such as
linear, polynomial, spline, and cubic spline. For instance, Kinnunen
et al. [2010] applied linear interpolation by assuming the continuity
of the data for the parts with missing data and independently ap-
plying interpolation to all coordinate time series. Another example
is Wang et al. [2021], where the authors set missing data when the
pupil size was outside a range and then applied spline interpolation
to correct the missing values.

3.2.1 Linear Interpolation. Linear interpolation is, of the identified
literature, the most commonly used method to deal with missing
data in eye-tracking studies after removing the data. This technique
assumes that the underlying signal is a linear function and fills
in the missing data by connecting the available data points with
straight lines. While linear interpolation is a simple and efficient
method, it can produce artifacts in the interpolated data and can
introduce errors in the analysis of the eye-tracking data.

An example of the use of the linear interpolation method is
in Bafna et al. [2020]. In this work, the authors removed 200 ms
before and after a blink using the Tobii 4C Eye Tracker3 during a
typing task. Another example of this is Saluja et al. [2019], here the
authors also used linear interpolation. However, this was during a
reading task and without removing additional data before and after
the blink.

3.2.2 Spline Interpolation. Spline interpolation is another method
we have seen in the identified literature more than once. Unlike
linear interpolation, which assumes a constant rate of change be-
tween data points, spline interpolation uses piecewise polynomials
to interpolate data, resulting in a smoother fit. Cubic spline inter-
polation is a specific type of spline interpolation that uses cubic
polynomials to interpolate between data points. Spline interpola-
tion has been used in eye-tracking studies to fill in missing data
due to blinks, head movements, or other sources of noise.

For example, Wang et al. [2021] used spline interpolation to
correct for missing data when the pupil samples were outside of a
pre-determined range during a driving simulator experiment. For
cubic spline interpolation, we identified Morales et al. [2018]. Here
the authors used the EyeLink and its online parser software to
identify blinks, after which they applied cubic splines to remove
blink data.

3.2.3 Polynomial Interpolation. Polynomial interpolation is an-
other method that can be used for infilling missing values in eye-
tracking data. In this method, a polynomial function is used to fit
the known data points, and the polynomial is then used to estimate
the values of the missing data points. An advantage of polynomial
interpolation is that it is easy to implement, and it can be used to
estimate missing data points with a high degree of accuracy. How-
ever, polynomial interpolation is also sensitive to outliers in the

3https://www.tobii.com/

data, and it can produce unrealistic estimates if the data contains
extreme values or abrupt changes in eye movement patterns. An
example of the use of polynomial interpolation we identified in
our search is the work from Keshava et al. [2020], here the authors
employ the interpolation method to the eye movements from a VR
task.

3.3 Other
Finally, we identified a range of alternative methods to deal with
missing data caused by blinks, including imputation, WEKA, aggre-
gating, and winsoring. For instance, Li et al. [2020] employed the un-
supervised Expectation-Maximization algorithm to impute missing
values in their eye-tracking data. Likewise, Cole et al. [2015] filled
in the missing data using observed session transition probabilities.
Despite the various approaches identified, there is no consensus in
the literature on which method is the most appropriate for dealing
with blinks. While most reviewed studies remove the affected data,
this often leads to a significant loss of data.

4 DISCUSSION
In this work, we identified several ways past work has employed
to identify blinks and algorithms used to infill the missing data
and found that these are not consistent throughout the existing
literature. In the following, we will showcase the challenges of the
different interpolation methods and the impact having incorrect
cut-off times can have on the interpolation.

Linear interpolation. Linear interpolation is a simple and com-
monly used infilling method for missing data in the identified liter-
ature. The method involves drawing a straight line between pairs
of data points that flank a gap and then interpolating data points
along the lines to fill in the missing values. From the identified
infilling methods used, linear interpolation was the most common
one, which we attribute to its simplicity and low computational
cost. However, as we visualize in Figure 2, the method assumes
that the data points before and after the gap are linearly related,

(a) (b) (c) (d)

Figure 2: An example of linear interpolation over a blink
during a reading experiment. Here, the black dots represent
fixations, the black line eye movements between the fixa-
tions and the red lines represent the interpolation. In (a), we
visualized the interpolation without removing any of the
information pre or post-blink. In (b), we visualize the inter-
polation with the removal of information pre and post-blink,
however, not enough of the artifacts have been removed. In
(c), we visualize the correct removal of artifacts pre and post-
blink. Finally, in (c), we showcase the removal of too much
of the data pre and post-blink.

https://www.tobii.com/
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(a) (b) (c) (d)

Figure 3: An example of spline interpolation over a blink
during a reading experiment. Here, the black dots represent
fixations, the black line eye movements between the fixa-
tions and the red lines represent the interpolation. In (a), we
visualized the interpolation without removing any of the
information pre or post-blink. In (b), we visualize the inter-
polation with the removal of information pre and post-blink,
however, not enough of the artifacts have been removed. In
(c), we visualize the correct removal of artifacts pre and post-
blink. Finally, in (c), we showcase the removal of too much
of the data pre and post-blink.

which is not always the case. Additionally, the method can produce
abrupt changes in velocity or acceleration, as most predominantly
visualized in Figure 2a and Figure 2b. As such, when using linear
interpolation, a best practice would be to visually inspect each indi-
vidual blink to see where artifacts of blink behavior are introduced
into the data. Removing these artifacts will allow for the best pos-
sible interpolation between data gaps, as visualized in Figure 2c.
However, overdoing the cut-off before and after the artifacts will
introduce new noise into the data, as visualized in Figure 2d.

Spline interpolation. Spline interpolation is a more sophisticated
way of interpolating compared to linear interpolation. This method
fits a piecewise polynomial function to the data points where the
resulting function is smooth and passes through all data points,
including those with missing data. It allows for considering the
velocity and direction of the data points pre and post-missing data to
ensure the curve will not abruptly change velocity or acceleration.
While this method is not as popular in the identified literature
as linear interpolation, it could provide a more smooth and more
accurate interpolation compared to linear interpolation. However,
spline interpolation requires more computational resources than
linear interpolation. Still, this interpolation method struggles with
the artifacts introduced pre and post-blink as visualized in Figure 3a
and Figure 3b.When visualizing the exact cut-offwhere the artifacts
from blinks start in Figure 3c, the infill method results in a smooth
curve taking the velocity and acceleration into account before and
after the gap. However, when cutting off too much of the data as
visualized in Figure 3d, we can see that the infilling method misses
quite a few of the words that would otherwise be in the path of the
eye path.

Polynomial interpolation. Polynomial interpolation is the last
method we identified in multiple papers throughout the identi-
fied literature. It fits a single polynomial function to all the data
points, which is different from spline interpolation, which divides
all data points into segments. The resulting function is smoother
than linear interpolation but not as smooth as spline interpolation.

(a) (b) (c) (d)

Figure 4: An example of polynomial interpolation over a
blink during a reading experiment. Here, the black dots rep-
resent fixations, the black line eye movements between the
fixations and the red lines represent the interpolation. In (a),
we visualized the interpolation without removing any of the
information pre or post-blink. In (b), we visualize the inter-
polation with the removal of information pre and post-blink,
however, not enough of the artifacts have been removed. In
(c), we visualize the correct removal of artifacts pre and post-
blink. Finally, in (c), we showcase the removal of too much
of the data pre and post-blink.

Similarly to linear interpolation, it is a simple and computationally
efficient method for dealing with missing data. However, it has
limited accuracy in case the underlying data is highly nonlinear,
which results in spurious oscillations near the endpoints of the
interpolated data, as visualized in Figure 4a and Figure 4b. Despite
this, when the cut-off periods are chosen adequately, it can neatly
estimate the missing data, as visualized in Figure 4c. On the other
hand, removing too much of the data before and after a blink can
result in an error compared to the original data, see Figure 4d.

5 CONCLUSION
In conclusion, interpolation methods provide a powerful tool for
handling missing data in eye-tracking studies. We argue that in-
terpolation methods should be preferred over removing data that
contains blinks, as this results in a large portion of the data be-
coming unusable. Linear interpolation is the most commonly used
interpolation method in the identified work and provides an accu-
rate estimate of the eye movements when the artifacts introduced
by blinks are correctly cut-off. However, this method can produce
abrupt changes in velocity and acceleration when the artifacts are
either ignored or improperly dealt with. Spline interpolation is a
more sophisticated method that provides a smooth and accurate
estimate but requires more computational resources compared to
linear and polynomial interpolation. While this method is less sen-
sitive to abrupt changes in velocity and acceleration, appropriately
handling the artifacts introduced before and after a blink will yield
the best result. Lastly, polynomial interpolation is simple and com-
putationally efficient, similar to linear interpolation. However, the
accuracy of this method heavily relies on the linear nature of the
eye movements before and after the blink, as such appropriately
dealing with the artifacts is, especially with this method, hugely
important.

The choice of the interpolation method will depend on the spe-
cific characteristics of the eye movements and, thus, indirectly
depend on the nature of the experiment where the data is collected.
In all cases of interpolating, the challenge is correctly identifying
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and removing the artifacts introduced pre and post-blink. In the
literature identified, we only found one case where the authors
removed data pre, and post-blink and another where the authors
relied on the included parsing algorithm. The remaining works
only mention that blinks are identified as missing data and do not
specify any additional data being removed either pre or post-blink.
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