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ABSTRACT

Physiologically-adaptive Virtual Reality systems dynamically ad-

just virtual content based on users’ physiological signals to enhance

interaction and achieve specific goals. However, as different users’

cognitive states may underlie multivariate physiological patterns,

adaptive systems necessitate a multimodal evaluation to investigate

the relationship between input physiological features and target

states for efficient user modeling. Here, we investigated a multi-

modal dataset (EEG, ECG, and EDA) while interacting with two

different adaptive systems adjusting the environmental visual com-

plexity based on EDA. Increased visual complexity led to increased

alpha power and alpha-theta ratio, reflecting increased mental fa-

tigue and workload. At the same time, EDA exhibited distinct dy-

namics with increased tonic and phasic components. Integrating

multimodal physiological measures for adaptation evaluation en-

larges our understanding of the impact of system adaptation on

users’ physiology and allows us to account for it and improve adap-

tive system design and optimization algorithms.
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1 INTRODUCTION

Physiological computing [15] is an emerging field that investigates

how the physiological indicators of human affective and cognitive

states can be utilized as inputs in adaptive systems to accomplish
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specific objectives, such as visualization, content or interaction

adaptations [11]. Physiological computing adaptive systems are

grounded in psychophysiological inference, which assumes that

the measured physiological responses accurately and sensitively

represent the underlying users’ states [15]. However, this assump-

tion often proves problematic due to the intricate relationship be-

tween physiological measures and their psychological or cognitive

correlates [15]. The development of physiological computing is

hindered by the complexity, validity, and specificity of psychophys-

iological inference [15]. Most physiological data exhibit complex

dynamics, making it challenging to establish a one-to-one relation-

ship with psychological constructs [15]. Given these challenges, it

is essential to consider a multimodal evaluation of physiological

interactions [16], validating multiple physiological data and their

relationships for future use in adaptive systems.

Consequently, combining different physiological measurements

enables a hybrid evaluation of adaptive systems [18]. Instead of

solely measuring the final impact of an unsuccessful adaptation

(e.g., a decrease in task performance), a second signal is utilized to

assess the effect of the adaptation on users’ arousal. This approach,

known as multimodal or hybrid Brain-Computer Interface (BCI)

systems, has been proposed to enhance the reliability, proficiency,

and utility of BCI systems [18]. For example, Scherer et al. [42] com-

bined a Heart Rate (HR) with Steady state visually evoked potential

(SSVEP) BCI to enable self-initiation, allowing users to switch the

adaptive system on/off independently. Thus, further research is

needed to understand better the relationships between adaptive

system dynamics, system performance, and its input physiological

measures to effectively align them for user personalization and

adaptation [38]. This is particularly relevant for adaptive systems,

as multimodal input has been relatively overlooked or primarily

focused on alternative channels for adaptation, such as peripheral

measure or facial and gesture recognition [18, 38].

This work aims to evaluate the relationships between measures

extracted from physiological signals, such as EDA, ECG, and EEG,

and evaluate the impact of Virtual Reality (VR) system adaptation

and visual complexity on these measures. This analysis is particu-

larly important since different physiological signals may respond

to adaptations at varying time windows, making some more suit-

able for faster-paced adaptations while others may require slower

paces [15]. We chose the open dataset of Chiossi et al. [9], which

includes a multimodal dataset (ECG, EDA, EEG, behavioral perfor-

mance) collected during an interaction with two physiologically-

adaptive systems that optimized VR visual distractors. We first in-

vestigated physiological reactivity in EDA, ECG, and EEG measures

https://orcid.org/0000-0003-2987-7634
https://orcid.org/0000-0002-4595-7485
https://orcid.org/0000-0001-5462-8782
https://doi.org/10.1145/3656650.3656657 
https://doi.org/10.1145/3656650.3656657 
https://doi.org/10.1145/3656650.3656657 


AVI 2024, June 3–7, 2024, Arenzano, Genoa, Italy Chiossi et al.

when the adaptive systems performed adaptations of visual com-

plexity. The adaptive systems successfully impacted EDA features,

specifically tonic and phasic components, in response to changes in

visual complexity. This suggests that EDA can be a reliable indica-

tor of cognitive workload and engagement, making it a promising

candidate for adaptive system design. Secondly, analyzing stable

visual complexity demonstrated selective influences on specific

physiological features. While heart-related measures (HR and HRV)

did not show significant effects, EEG measures (Alpha power and

Alpha/Theta Ratio) exhibited strong linear associations with visual

complexity. The increase in Alpha power and Alpha/Theta Ratio as

visual complexity heightened suggested higher cognitive workload

and engagement when participants saw visual distractors.

Our work extends the foundational work of Chiossi et al. [9] by

investigatingmultimodal physiological responses to VR adaptations.

While previous studies have established a baseline understanding

of physiological signals as inputs for adaptive systems, our analysis

advances this knowledge by evaluating how these signals vary over

different adaptations and complexity levels.

2 RELATEDWORK

We introduce physiological computing for VR and review adaptive

systems that employ multimodal physiological inputs. Finally, we

summarize the physiological correlates of visual complexity.

2.1 Physiological Computing in Virtual Reality

The physiological computing perspective allows the utilization of

psychophysiological data for developing new control channels and

adapting tasks based on changes in workload [36]. VR emerges as a

promising domain [11], allowing for a high degree of flexibility and

solution space that may not be feasible in physical spaces alone.

Physiologically adaptive VR systems leverage physiological in-

put to discern users’ states and adapt interaction features to achieve

a shared goal. The combination of implicit physiological monitoring

and adaptive VR environments establishes a closed-loop model [15].

Closed-loop models serve as a conceptual framework for adap-

tive systems that dynamically personalize software, visualizations,

and interactions in real-time based on individual requirements [7].

Adaptive VR systems dynamically adjust system parameters in

response to the current task or user. The adaptive controller em-

bedded within a closed-loop system is a dynamic mechanism that

responds to evolving inputs within predefined standards or goals.

The primary objective has always been to enhance task perfor-

mance, as exemplified by the seminal work of Pope and Bogart [36],

where a biocybernetic loop was devised to sustain high engage-

ment and optimize task performance. Similarly, Chiossi et al. [9]

supported working memory (WM) performance by adapting the

number of visual distractors with a rule-based approach, i.e., the

level of visual complexity based on a tonic variation of EDA. Similar

approaches have been proposed in applied training scenarios [30]

and virtual rehabilitation therapies using fatigue-aware systems

based on EMG [22]. Together, those results show how integrating

physiological computing within adaptive VR systems can support

task performance and improve the usability and user experience of

VR systems and interactions.

2.2 Multimodal Physiological Inputs for

Adaptive Systems

A multimodal adaptive system can be defined as a system that

enables users to interact using two or more distinct modalities for

both input and output [18]. In this context, “modality” encompasses

the methods through which users provide input and the pathways

through which they receive output information. An initial example

system is by Pfurtscheller et al. [34], which employs two different

brain signals (EEG and functional Magnetic Resonance Imaging)

in the context of assistive technologies. Leeb et al. [22] combined

EEG and electromyography (EMG) signals during left/right-hand

movement tasks. To simulate muscle fatigue, they degraded the

EMG signals and showed that the recognition performance could

be improved compared to EEG or EMG-only recognition.

Furthermore, to enhance the adaptive system’s performance,

other research in the field has encompassed feature-level fusion [18].

This fusion technique is used formodalities that may not necessarily

be of the same type but are tightly coupled or synchronized, such as

ECG and EDA. Thus, such features are combined into a single vector

as input into a classifier. For instance, Chanel et al. [6] employed

both EEG and peripheral sensors for arousal assessment. They

extracted six EEG and 18 peripheral features, merged them into a

unified vector, and subsequently fed this data into classifiers such

as naive Bayes and Fisher’s discriminant [6]. Their results showed

that sensor fusion yielded more robust results than utilizing EEG

or peripheral physiological data in isolation.

Lastly, a third approach known as decision-level fusion has been

utilized to integrate modalities that may not be tightly synchro-

nized [47]. In this fusion level, data from each modality are indepen-

dentlymodeled, and the individual recognition results are combined.

Decision-level fusion allows for the combination of modalities to

perform single or multiple tasks, contributing to a higher-level

task. This type of fusion has been applied in various scenarios. For

instance, Merzagora et al. [29] combined neurophysiological data,

specifically EEG and fNIRS, in a WM task. However, it is worth

noting that most of these studies have not extensively analyzed

these features offline to evaluate the impact of adaptation on system

usability and users’ physiological reactions.

2.3 Physiological Correlates of Visual

Complexity

The level of visual complexity, i.e., level of detail, clutter, and ob-

jects [31], in VR can influence cognitive load or attention alloca-

tion, ultimately affecting overall task performance and user expe-

rience [35, 37]. Thus, the limited capacity of perceptual and atten-

tional processing in VR necessitates careful management of visual

complexity to avoid cognitive overload, particularly in VR tasks

requiring visual search [13] and executive functions like WM [28].

Furthermore, studies show that visual complexity affects phys-

iological responses such as EDA and EEG. While moderate com-

plexity enhances pleasantness and flow, facilitating cognitive en-

gagement [12], excessive complexity can increase physiological

stress and hinder performance [9, 35]. Peifer et al. [33] observed

a U-shaped pattern in the psychophysiological processes of flow

experience, where high flow values corresponded with moderate

sympathetic and high parasympathetic activation. This aligns with
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De Manzano et al. [12], suggesting a link between flow and in-

creased physiological arousal, as measured by EDA or ECG. Such a

balance of sympathetic and parasympathetic responses is associ-

ated with improved adaptation, effective workload coping [2], and

enhanced stress management [41].

These results suggest that physiological arousal could mediate

the relationship between visual complexity and flow. Moderate

levels of complexity might induce an optimal level of physiological

arousal, promoting flow experiences and enhancing task cognitive

engagement. On the other hand, excessively high complexity could

lead to increased physiological stress, potentially hindering flow

experiences and task performance [24, 35].

Physiological arousal, as indicated by EDA, has been utilized

to adjust VR visual complexity, enhancing task engagement and

performance[9, 10]. Specifically, when adaptations of visual com-

plexity in VR were task-relevant, they reduced users’ perceived

workload [10]. Conversely, task-irrelevant complexity improved

performance and decreased workload [9] based on EDA. These

findings highlight the potential of physiologically adaptive VR sys-

tems based on an adaptation of visual complexity to allow for more

engaging and efficient experiences. Thus, in this work, we focus on

the effect of VR adaptations on different physiological correlates of

visual complexity to understand the user’s real-time reactions to

the adaptations made within the VR environment.

3 METHOD

We utilized the open dataset from Chiossi et al. [9] as it comprises

behavioral, physiological (EEG, ECG, and EDA), and subjective

data. Moreover, this dataset includes one physiological channel,

i.e., EDA, as inputs for an adaptive system, thus together with

EEG and ECG data allows for analyzing the effect of adaptations

on such multimdoal data. The dataset is available on the Open

Science Framework at https://osf.io/axvfy/. We refer the reader to

their paper for a detailed task implementation and data collection

description. The dataset included 20 participants with an average

age of 26.05 years (𝑆𝐷 = 3.62). EDA data were collected via a GSR

module (250 Hz, BrainProducts GmbH, Germany). ECG data were

recorded using a Polar H10 chest strap (130 Hz, Polar, Finland)

with electrodes moistened before data collection and placed over

the xiphoid process of the sternum. EEG data were recorded at

a sampling rate of 250 Hz using a 7-channel dry electrode cap

embedded in the HTC VIVE headset from Wearable Sensing (DSI-

VR 300, 250 Hz, San Diego, CA, USA). The electrode positions

followed the 10-20 system, including FCz, Pz, P3, P4, PO7, PO8,

and Oz. Electrode impedances were maintained below 20 kΩ, with
electrodes linked to the ears as a reference for the EEG recording.

The EDA, ECG, and EEG data were simultaneously recorded using

the LabStreamingLayer (LSL) framework
1
.

3.1 Research Questions

We aim to gauge the users’ responses to visual complexity adapta-

tions and levels by assessing various physiological measures. This

evaluation allows us to measure the impact of these changes on dif-

ferent physiological indicators. This will help to determine whether

an adaptive system based on EDA can effectively include multiple

1
https://labstreaminglayer.readthedocs.io/info/intro.html

modalities and be adapted for different applications. Moreover, we

want to investigate the effect of different levels of visual complexity

on attention allocation, engagement, and task load physiological

correlates. Given the role of Skin Conductance Level (SCL), a tonic

component of EDA, as input for adaptation, we hypothesize that

system adaptations will significantly impact SCL (HP1). HP1 is

rooted in SCL’s sensitivity to changes, a key indicator of the sys-

tem’s ability to respond to user physiological states dynamically.

Such an effect would validate our system’s architecture, highlight-

ing the effectiveness of our physiologically adaptive VR system

design. Our analysis contributes to developing physiologically-

adaptive VR systems and drafts new possibilities for a larger input

space and evaluation for immersive adaptive environments with

varying levels of visual complexity. Drawing on the principles of

physiologically-adaptive VR systems and existing research, we put

forth the following hypothesis and research questions:

• RQ1 Do adaptations of visual complexity that use EDA as

input, impact participants’ stress levels, as indexed by HR

and HRV?

• RQ2 Do adaptations of visual complexity that adjust the

number of distractors, using EDA as input, influence internal

and external attention, as measured by alpha and theta EEG

oscillations?

Secondly, Chiossi et al. [9] provided an initial insight into the

relationship between visual complexity, physiological arousal, and

behavioral performance. Thus, we expand their work by evaluating

the effect of varying stable levels of visual complexity on different

physiological measures. Thus, we hypothesize:

• RQ3 Does an increase in visual complexity, i.e., distracting

information, increase external attention resources as indexed

by a decrease in EEG Alpha oscillations [25]?

• RQ4 Does an increase in visual complexity, i.e., distracting

information, increase the cognitive workload as indexed by

the ratio between alpha and theta oscillations [39]?

3.2 Experimental Task

The experimental task employed in this study was adapted from

the N-Back task, as described by Chiossi et al. [9]. Participants

were immersed in a neutral VR environment, where they were

presented with a marble-like pillar and two buckets positioned on

the left and right sides, respectively. Spheres of different colors

(green, red, blue, and black) were generated and appeared on the

pillar randomly, based on McMillan et al. [28]. Participants were

required to use an HTC VIVE controller to grab the spheres and

place them into the appropriate buckets. The rule for placing the

spheres was based on matching the current sphere’s color with

the sphere’s color presented two steps prior. The sphere would be

placed in the right bucket if the colors matched. Conversely, if the

colors did not match, the sphere would be placed in the left bucket.

Participants had a time window of 4 seconds to pick up the sphere

to avoid making an error. New spheres appeared when the current

sphere was successfully placed in one of the buckets or after the

4-second time limit had elapsed.

https://osf.io/axvfy/
https://labstreaminglayer.readthedocs.io/info/intro.html
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(a) Stream = 24 (b) Stream = 191 (c) Stream = 347

Figure 1: VR capture of a single trial of the VR n-back from a birds-eye perspective in the first row. In (a) is depicted the

condition with low visual complexity with Stream = 24. In (b) is depicted the condition of moderate visual complexity with

Stream = 191, and lastly in (c), the highest visual complexity with Stream = 347.

3.3 Adaptive Systems Architecture

Chiossi et al. [9] introduced an adaptive system that supports users’

engagement and task performance by adapting the visual complex-

ity based on EDA. Our focus was on the two adaptive conditions,

where we divided the EDA, ECG, and EEG signals into 20-second

epochs corresponding to the periods when the stream of non-player

characters (NPCs) underwent adaptations, see Figure 1. The first

adaptive system, i.e., Adaptive Test System is based on the Moti-

vational Intensity model (MIM) [40]. According to this model, when

task demands are perceived as achievable, there is a proportional

relationship between mental effort and task demand [40]. How-

ever, as task demands increase and success becomes less likely, the

investment of effort decreases while the perceived workload in-

creases. This results in impaired performance, increased perceived

workload, and reduced engagement, highlighting the association

between WM capacity and these outcomes. Thus, the Adaptive

Test System decreases the visual complexity when the arousal

increases, as indexed by SCL, by removing 8 NPCs and increasing

it by adding 16 NPCs when a decrease in SCL is detected. The sec-

ond system, i.e., Reverse Adaptive System, followed an inverse

logic and served as a control condition. Here, the system either

aims to progressively increase the task demands by adding 16 NPCs

when the participant’s arousal is increasing or when the arousal

is decreasing, removing visual complexity from the VR scene (-8

NPCs), ultimately leading to either an overly distracting or empty

VR scene, to decrease users’ engagement. The VR-physiologically

adaptive system performed an average of 𝑀 = 6.94 adaptations

(𝑆𝐷 = 2.77) for the Adaptive Test condition, while the Reverse

Adaptive System𝑀 = 5.19 (𝑆𝐷 = 2.76) adaptations.

3.3.1 Adaptive Mechanism. Both systems employ a rolling window

approach for adaptation. They utilize two distinct data windows for

SCL analysis: a 180-second window (𝑊1) for low-frequency changes

and a 30-second window (𝑊2) for high-frequency changes. The SCL

levels are averaged over these windows to stabilize the value, using

an epsilon parameter for smoothing.

3.3.2 Slope Analysis. Slopes of SCL changes in these windows

(𝑠1 and 𝑠2) are computed, forming the basis for adaptive decision-

making. 𝑠1 is calculated from the average tonic value between points

𝑡−2 and 𝑡0, while 𝑠2 uses values between 𝑡−1 and 𝑡0.

3.3.3 Rule-Based Adaptation. The adaptation decision is based

on comparing the low-frequency slope (𝑠1) to the high-frequency

slope (𝑠2), adhering to a threshold parameter 𝜃 to ensure stability

in adaptations. This comparison drives the system to increase or

decrease task difficulty, as detailed in Equation 1. This adaptive

process occurs every 20 seconds, ensuring timely responsiveness

to physiological changes.

𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛(𝑠1, 𝑠2) =
{
increase if 𝑠1 ≤ 𝑠2 − 𝜃

decrease if 𝑠1 ≥ 𝑠2 + 𝜃
(1)

4 DATA PREPROCESSING AND ANALYSIS

We investigated the physiological indicators of cognitive workload

and arousal in a visual WM task, while adaptive systems dynami-

cally adjusted the visual complexity. We open-source our analysis

scripts on Github
2
. We invite researchers to reproduce our results

and expand upon our findings and analysis approaches.

4.1 EDA & ECG Preprocessing

We used Neurokit [26] for EDA data preprocessing. This involved

a third-order Butterworth high-pass filter at 3 Hz and nonnegative

deconvolution analysis [3] to separate tonic and phasic components.

We computed average amplitude of nsSCRs and tonic SCL, with

nsSCR peaks identified using a .05𝜇S threshold. ECG data were pro-

cessed in the time domain, focusing on HR and HRV (RMSSD). We

2
https://github.com/mimuc/avi24-adaptation-dataset

https://github.com/mimuc/avi24-adaptation-dataset
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Figure 2: SCL and nSCRs Results. The Adaptive System sig-

nificantly affected SCL, leading to distinct SCL responses

based on stream direction. Amplitude of skin conductance

responses (nSCRs) varies significantly with the adaptive sys-

tem and adaptive visual complexity.

applied a 3-45 Hz (3rd order) FIR band-pass filter with Neurokit [26]

and used Hamilton’s method for segmentation and QRS complex

identification, to compute HR and HRV.

4.2 EEG Preprocessing

We processed the EEG raw data via the MNE Toolbox [17]. EEG

data were recorded with a sampling frequency of 250 Hz from dry

electrodes placed on Fz, P3, Pz,P4, PO7, Oz, PO8 locations (10/20

system), with a reference set at linked earlobes. We notch-filtered

the signal at the power frequency of 50 Hz and then band-passed

between 1 and 70 Hz to remove high and low-frequency drifts.

We referenced the data to the common average reference (CAR).

Next, we computed an independent component analysis (ICA) with

extended infomax algorithgm for automatic artifact detection and

correction with the ICLabel plugin [23]. We then analyzed the

preprocessed EEG data in two frequency bands: Theta (4–8 Hz) and

Alpha (8–12 Hz) using Welch’s method. We computed alpha for

posterior sites, i.e., PO8, PO7, andOz electrodes, and extracted Theta

power frommidline sites, i.e. Fz and Pz. Moreover, we computed the

ratio of midline theta activity’s absolute power to posterior alpha

activity’s absolute power as an implicit measure of workload [39].

5 RESULTS

We report quantitative findings from analyzing physiological (EDA,

ECG, and EEG) data from the dataset. We employed a Repeated

Measures analysis of Variance
3
(RM-ANOVA) for adaptive levels

of visual complexity and a Linear Mixed Model (LMM) approach

for EDA, ECG, and EEG measures for stable visual complexity.

To account for the repeated-measures structure in the data, we

included a random intercept for each participant in our model.

3
The predicted marginal means (PMM) for the different levels of the variable ’Adaptive

System’ and ’Stream Adaptation’ were calculated using a Kenward-Roger degrees-of-

freedom method.
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Figure 3: HR and HRV Results. We did not find significant

results for variation of visual complexity in the Test and

Reverse Adaptive Sytems in both HR and HRV.

5.1 Adaptive Visual Complexity

5.1.1 EDA Results – SCL. RM-ANOVA test detected a significant

effect of the factor Adaptive System on the SCL (𝐹 (1, 177) = 22.447,

𝑝 < .001). Tukey posthoc test showed that participants who expe-

rienced an Increase in the Test adaptive system condition had a

significantly lower SCL compared to those in the Reverse adaptive

system when experiencing a Stream Decrease (𝑃𝑀𝑀 = −11506,
𝑆𝐸 = .458, 𝑝 = .003). When contrasting an Increase in the Test

adaptive system with a Decrease in the same system, participants

had a significantly higher SCL (𝑃𝑀𝑀 = −1.515, 𝑆𝐸 = .41, 𝑝 = .002).

Finally, when the Reverse adaptive system performed a Stream

Increase, the SCL increased as compared to the Decrease in the

same system (𝑃𝑀𝑀 = −2.292, 𝑆𝐸 = .481, 𝑝 < .001). Similarly, in

the pairwise comparison between a Decrease in the Test adaptive

system and a Decrease in the Reverse Adaptive system, we report

a significant difference (𝑃𝑀𝑀 = −2.201, 𝑆𝐸 = .443, 𝑝 < .001). On

the other hand, the factor Stream Adaptation did not show any

effect (𝐹 (1, 177) = 0.219, 𝑝 = .640).

5.1.2 EDA Results – nSCRs amplitude. RM-ANOVA on average

nSCRs amplitude revealed a significant interaction effect between

Test Adaptive and Reverse Adaptive systems and Stream Adap-

tation, 𝐹 (1, 177) = 36.09, 𝑝 < .001. However, the main effects of

Adaptive System, 𝐹 (1, 177) = 0.86, 𝑝 = .355, and Stream Adapta-

tion, 𝐹 (1, 177) = 1.52, 𝑝 = .219, were not statistically significant.

Posthoc comparisons using the Tukey method revealed several sig-

nificant differences. The contrast comparing the Stream Increase

condition (Test adaptive system) to the Stream Increase condition

(Reverse adaptive system) yielded a significant difference, with

an estimated mean difference of 1.61 (𝑆𝐸 = 0.458, 𝑝 = .003). The

contrast comparing the Stream Increase condition (Test adap-

tive system) to the Stream Decrease condition (Test adaptive

system) we found a significant difference, with an estimated mean

difference of 1.52 (𝑆𝐸 = .410, 𝑝 = .002). The contrast comparing

the Stream Increase condition (Reverse adaptive system) to the
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Figure 4: EEG results for Adaptive Visual Complexity. RM-

ANOVA showed no significant effects for EEG Alpha power,

neither from theAdaptive Systemnor StreamAdaptation

factors, and no significant interaction. Similar results were

observed for Theta and Alpha to Theta Ratio.

Stream Decrease condition (Reverse adaptive system) demon-

strated a significant difference, with an estimated mean difference

of -2.29 (𝑆𝐸 = 0.481, 𝑝 < .001). Likewise, the comparison compar-

ing the Stream Decrease condition (Test adaptive system) to the

Stream Decrease condition (Reverse adaptive system) revealed a

significant difference, with an estimated mean difference of -2.20

(𝑆𝐸 = 0.443, 𝑝 < .001).

5.1.3 ECG Results – HR. The results of the HR RM-ANOVA analy-

sis did not yield any significant findings, see Figure 3. As neither

the Adaptive System factor (𝐹 (1, 177) = 1.418, 𝑝 = .235), nor the

Stream Adaptation factor (𝐹 (1, 177) = .136, 𝑝 = .713), or their

interaction (𝐹 (1, 177) = .055, 𝑝 = .815) had a significant effect on

HR.

5.1.4 ECGResults – HRV. RM-ANOVAonHRV showed non-significant

effects for theAdaptive System factor (𝐹 (1, 177) = 0.338, 𝑝 = .562),

the Stream Adaptation factor (𝐹 (1, 177) = .304, 𝑝 = .582), and

their interaction (𝐹 (1, 177) = .15, 𝑝 = .699), see Figure 3.

5.1.5 EEG Results – Alpha. RM-ANOVA for the EEG alpha power

revealed non-significant effects. TheAdaptive System factor (𝐹 (1, 177) =
.193, 𝑝 = .661) and the StreamAdaptation factor (𝐹 (1, 177) = .073,

𝑝 = .787) did not have a significant impact on alpha power. The

interaction between the two main factors was also non-significant

(𝐹 (1, 177) = .223, 𝑝 = .637), see Figure 4.

5.1.6 EEG Results – Theta. Theta yielded similar results as Alpha.

We did not detect significant effects across main factors (𝑝 > .05).

See Figure 4.

5.1.7 EEG Results – Alpha / Theta Ratio. The EEG Alpha to Theta

Ratio analysis yielded no significant effects ( 𝑝 > .05), see Figure 4.

5.2 Stable Visual Complexity

5.2.1 ECG Results – HR. We conducted a linear mixed model anal-

ysis to predict Heart Rate using Visual Complexity Level. We in-

cluded participants as a random effect. The model’s total explana-

tory power was substantial (conditional 𝑅2 = 0.78). However, the
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Figure 5: ECG HR and HRV results for Stable Visual Com-

plexity. Analysis did showed no significant impact of the

Visual Complexity on HR and HRV.
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Figure 6: EEG results for Stable Visual Complexity. Analysis

revealed that increasing Visual Complexity increases Alpha

power and Alpha to-theta ratio while Theta power remains

unaffected.

effect of the Adaptive System was statistically non-significant and

negative (𝛽 = −0.14, 95% CI [-0.51, 0.22], 𝑝 = .443), see Figure 5.

5.2.2 ECG Results – HRV. An LMM analysis was performed to pre-

dict HRV using Visual Complexity. As for HR, the model included

participants as a random effect. The model exhibited substantial

explanatory power (conditional R2 = .84). However, the effect of

Visual Complexity was statistically non-significant and positive

(𝛽 = 1.22, 95% CI [-4.59, 7.03], 𝑝 = .677), see Figure 5.

5.2.3 EEG Results – Alpha. A linear mixed model analysis was per-

formed to examine the relationship between EEG Alpha power and

Visual Complexity. The model included participants as a random

effect. The model exhibited a substantial total explanatory power

(conditional R2 = .27), indicating its ability to explain the variability

in the data. The effect of Visual Complexity on Alpha power was

statistically significant and positive (𝛽 = 1.12, 95% CI [.14, 2.10],

𝑝 = .025), suggesting that as Visual Complexity increases, there is a

corresponding alpha synchronization, i.e., every increase in Visual

Complexity level increases mean Alpha power by about 1.12 Hz.

5.2.4 EEG Results – Theta. In predicting Theta power as a function

of Visual complexity, we found thatmodel’s total explanatory power

was moderate (𝑅2 = 0.26). We did not report any significant effects

effect (𝛽 = .42, 95% CI [-.53, 1.38], 𝑝 = .376). The model intercept is

12.69 (95% CI [9.09, 16.29], 𝑡 (76) = 7.03, 𝑝 < .001).
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5.2.5 EEG Results – Alpha / Theta Ratio. The model for prediction

Alpha / Theta Ratio as a function of Visual Complexity showed a

substantial explanatory power ( R2 = .38) with moderate effect size

(marginal R2 = .07). The intercept was estimated as 0.67 (95% CI

[0.47, 0.87]). We found a statistically significant and positive effect

of Visual Complexity (𝛽 = .07, 95% CI [.02, .12], 𝑝 = .005).

6 DISCUSSION

We presented an in-depth analysis of the effect of visual complexity

adaptation in VR based on physiological arousal on ECG, EEG,

and EDA. Here, we discuss our results regarding the outcome of

adaptive and stable levels of visual complexity. Finally, we discuss

how such results can inform future applications of physiological

computing and adaptive systems.

6.1 Adaptation of Visual Complexity

We interpret our results in light of the Motivational Intensity Model

(MIM) [40], which provided the theoretical background to the adap-

tation logic for both systems [9]. The MIM provides a framework

for understanding the relationship between task engagement and

task demands on both behavioral and physiological levels.

According to the MIM, when task demands are manageable, and

individuals confidently achieve successful performance, there is a

proportional relationship between mental effort and task demand.

However, as task demands increase and success becomes less likely,

individuals reduce their effort investment, increasing perceived

workload and decreasing engagement. Studies on EDA consistently

demonstrated that increased physiological arousal is associated

with higher task engagement and mental effort [16, 27].

Considering HP1, our findings indicate that the adaptive sys-

tems, specifically designed based on EDA, successfully influenced

the EDA features in response to changes in visual complexity. This

confirms the reliability and effectiveness of the adaptive systems in

manipulating visual complexity by modulating EDA.

In the Test adaptive system, increased visual complexity led to

higher arousal levels, promoting greater engagement. Conversely,

increased visual complexity in the Reverse adaptive system re-

sulted in decreased arousal levels, potentially leading to participant

disengagement or boredom. Reducing visual complexity in the

task-irrelevant elements of the Reverse system led to lower SCL,

capturing the interference with performance and inducing a state

of low arousal. This supports the notion that manipulating visual

complexity impacts participants’ physiological responses. Regard-

ingRQ1 andRQ2, we did not observe significant effects in the ECG

and EEG measures during the 20-second window of visual com-

plexity adaptations. This suggests that the impact of adaptations

on these physiological measures may be impacted by trial-by-trial

fluctuations or require long observation periods to have an effect.

First, it is possible that the 20-second window was not sufficient

to detect subtle changes induced by visual complexity adaptations.

Physiological responses, especially HR andHRV,may exhibit slower

dynamics and require a longer period to discriminate across adapta-

tions [5]. Secondly, visual complexity may not impact HR and HRV

in general, as also shown by our results in Stable visual complexity.

Secondly, while these measures are sensitive indicators of phys-

iological arousal and cardiac regulation, their response to visual

complexity may vary depending on the specific context and appli-

cation. Adaptive systems designed to target interventions related to

anxiety disorders or stress inoculation may elicit more pronounced

changes in HR andHRV, as they are specifically tailored to modulate

physiological responses associated with these conditions [8, 19].

Regarding our RQ3, we found no effect of the visual complexity

adaptations on EEG correlates of attention, task engagement, or

mental workload. The 20-second intervals for the adaptations and

the reliance on EDA variations may not have been sufficient to

capture the rate of change of EEG measures related to attention,

engagement, and workload. The not stationary nature of EEG sig-

nals [43], alongwith the specific frequencies and patterns associated

with these cognitive processes, may require more refined adapta-

tion mechanisms, different thresholds, and longer time windows to

detect meaningful changes.

6.2 Stable Levels of Visual Complexity

Here, we investigated the relationship between a linear increase in

visual complexity and its impact on computed physiological features

related to physiological arousal, workload, and engagement.

6.2.1 ECG. Even though Chiossi et al. [9] found a relationship

between visual complexity and physiological arousal as measured

via EDA, we did not replicate such finding in arousal-related ECG

measures. This could be attributed to several factors. First, the

visual distractors used in our study were neutral and low-poly,

which might not have sufficiently impacted the arousal state at a

cardiac level. Prior research has indicated that visual stimuli with

emotional content or higher arousing properties are more likely to

induce significant changes in physiological measures such as HR

and HRV [40]. Hence, additional manipulations may be needed to

elicit stronger physiological responses to visual complexity, such

as introducing emotionally charged visual distractors.

The effect of visual complexity on ECG may vary with task

demands. Prior research indicates that task difficulty and cognitive

load can alter how visual stimuli affect physiological responses[14,

32]. In our study, the cognitive requirements of the N-Back WM

task might have overshadowed any influence of visual complexity

on ECG, particularly considering the added demands of distractors

on WM capacity.

Finally, the absence of significant effects on ECG measures by

adaptations of visual complexity further supports the notion that

the relationship between visual complexity and ECG responses is

complex and context-dependent.

6.2.2 EEG. We investigated the effects of visual complexity on

EEG correlates, specifically focusing on Alpha, Theta power, and

the Alpha/Theta Ratio as indicators of attentional resources, en-

gagement, and cognitive workload, respectively. Our hypotheses,

RQ3 and RQ4, proposed that increased visual complexity would

lead to a decrease in Alpha oscillations and an increase in the Al-

pha/Theta Ratio. However, our results have different findings that

do not confirm these hypotheses.

Contrary to previous work, we found a positive relationship

between visual complexity and Alpha power. As visual complexity

increased, so did Alpha power. This finding contradicts the notion

that Alpha power reflects reduced attentional resources or external



AVI 2024, June 3–7, 2024, Arenzano, Genoa, Italy Chiossi et al.

attentional engagement in response to visual complexity [44]. In-

stead, we propose two alternative interpretations that consider the

potential role of mental fatigue or attentional withdrawal induced

by continuous exposure to visually complex stimuli as in the stable

visual complexity conditions.

Mental fatigue, linked to higher Alpha power, is thought to stem

from cognitive resource depletion, as seen with continuous expo-

sure to visually complex stimuli [44]. However, its mechanisms are

debated, with some suggesting cognitive underload as a cause. Our

study, indicating decreased accuracy with higher complexity, coun-

ters the underload hypothesis [44]. High Alpha power may reflect

attentional withdrawal or task disengagement in demanding condi-

tions [46], suggesting a shift to internal focus or reduced external

attention. We interpret increased Alpha power as a compensatory

response to preserve cognitive resources under mental fatigue [44].

We observed no significant modulation of frontal theta power

with varying levels of visual complexity. This suggests a more com-

plex and context-dependent relationship between visual complexity

and frontal theta oscillations than previously thought [46]. The lack

of significant frontal theta modulation might be attributed to the

N-Back task’s relatively low difficulty or the insufficiently distract-

ing nature of visual distractors. If cognitive demands were low,

additional cognitive control might not have been necessary, or if

the distractors were not disruptive enough, they might not have

significantly influenced frontal theta activity.

We confirmed RQ5, establishing a link between increased visual

complexity and heightened EEG indicators of cognitive workload.

The Alpha/Theta Ratio, a known marker of cognitive workload,

linearly increased with visual complexity, indicating elevated cog-

nitive demands during the N-Back task [31, 39]. This rise suggests

higher cognitive resource and attentional control requirements to

manage tasks amid increasing complexity [13]. The joint increase

of Alpha and Theta powers reflects participants’ efforts to cope

with the task’s demands and complex visual stimuli [39].

6.3 Insights for Physiologically-Adaptive

System Design

Our analysis revealed increased Alpha power with greater visual

complexity, challenging the view that Alpha power signifies re-

duced attention in complex visual scenarios [25]. This increase

might indicate mental fatigue due to continuous exposure to com-

plex stimuli [44]. In physiologically adaptive systems, monitoring

Alpha power can be crucial for detecting mental fatigue, which

may lead to distraction and lower cognitive performance [4]. By

adapting to detected mental fatigue, such as adjusting task demands,

these systems can maintain user performance and engagement [15].

In high-stakes training scenarios, such as medical simulations or

hazardous environment training, users must maintain optimal cog-

nitive performance for effective learning and decision-making [1].

Adaptive systems, using continuous Alpha power monitoring, can

detect early signs of mental fatigue and adjust training complexity

or introduce breaks [45]. Similarly, in MR collaborative workspaces,

these systems can manage visual information to prevent cognitive

overload [21]. The increased Alpha/Theta Ratio, indicative of higher

workload in complex tasks, supports using this metric in adaptive

systems for dynamic task complexity adjustment [39].

In adaptive Mixed Reality (MR) environments, particularly in

transitional interfaces, cognitive demand varies during transitions

across the MR continuum [20]. Adaptive systems can use the Al-

pha/Theta Ratio to adjust visual complexity, aiding smoother tran-

sitions between VR, AR, and physical reality. For example, reducing

complexity in VR during high cognitive workload or simplifying

visual elements in AR during mental fatigue enhances user adapta-

tion. Based on real-time Alpha/Theta Ratio input, these adaptations

can prevent cognitive overload and improve engagement. Here, HR

and HRV, unaffected by visual complexity, may not assess cognitive

demands in complex tasks but are promising in affective computing

applications [30].

6.4 Limitation and Future Work

Our study links visual complexity with physiological responses,

underscoring the potential of adaptive systems in VR andMR, while

identifying limitations and space for further research. Our analy-

sis focused on investigating statistical differences in physiological

responses to visual complexity. Future work should explore classifi-

cation approaches using machine learning algorithms to enhance

our findings’ accuracy and precision [18]. Utilizing classifiers al-

lows a more efficient understanding of the relationship between

physiological measures and visual complexity, on the amount of

data needed for accurate classification and hardware performance

threshold. We propose employing supervised transfer learning or

unsupervised self-correcting classifiers, which require minimal ex-

plicit training phases. This approach can improve the robustness of

the results generalizing to diverse task set.

Moreover, we did not investigate change in adaptation quality

over time. User experience and usability may evolve with prolonged

exposure to adaptive systems [43]. Factors such as learning curves,

habituation, and system predictability can significantly influence

users’ perceptions and interactions with the system. To address this

limitation, future studies should conduct longitudinal experiments

with multiple sessions per participant to capture the dynamics of

adaptation and user experience over time [43].

7 CONCLUSION

We investigated the effect of visual complexity levels and adapta-

tion over physiological correlates of workload, engagement, and

attention allocation. Notably, EDA demonstrated significant reac-

tivity to visual complexity adaptations, suggesting its reliability

as an indicator of cognitive workload and engagement. We em-

phasize the importance of multimodal evaluation of physiological

interactions to understand the relationships between physiological

responses and users’ physiological reactivity when interacting with

an adaptive system. Integrating multiple physiological measures

and employing them as an evaluation metric and multimodal input

can significantly enhance the effectiveness of adaptive systems,

aligning them more effectively with users’ complex interactions.
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