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ABSTRACT
Physiological sensing enables us to use advanced adaptive func-
tionalities through physiological data (e.g., eye tracking) to change
conditions. In this work, we investigate the impact of infilling meth-
ods on LSTMmodels’ performance in handlingmissing eye tracking
data, specifically during blinks and gaps in recording. We conducted
experiments using recommended infilling techniques from previ-
ous work on an openly available eye tracking dataset and LSTM
model structure. Our findings indicate that the infilling method
significantly influences LSTM prediction accuracy. These results
underscore the importance of standardized infilling approaches
for enhancing the reliability and reproducibility of LSTM-based
eye tracking applications on a larger scale. Future work should
investigate the impact of these infilling methods in larger datasets
to investigate generalizability.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI).
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1 INTRODUCTION
Nowadays, eye tracking has emerged as an additional input channel
for multi-modal interactions, as evidenced by studies such as [Es-
teves et al. 2015; Lischke et al. 2016; Turner et al. 2014]. However,
optical and infrared eye tracking data are susceptible to data loss,
particularly when the eye tracker encounters challenges in esti-
mating pupil direction, frequently occurring during human blinks.
This frequent data loss poses challenges for traditional methods
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of comprehending user behaviors and prediction models, includ-
ing intent prediction, necessitating additional pre-processing steps.
Consequently, various blink detection methods and strategies to
address gaps in the input data stream have been explored. Grootjen
et al. [2023] underscored the absence of standardized processes to
overcome challenges posed by eye blinks, introducing a significant
impediment to the reproducibility and comparability of findings
across diverse studies. Following this, Grootjen et al. [2024] showed
the inconsistencies in reporting and the influence different use-case-
specific approaches have on the internal validity of eye-tracking
studies. While some interactive systems disregard input affected
by missing data, this practice introduces input lag and unexpected
jumps and jitters, substantially diminishing system usability [Lu-
grin et al. 2013; MacKenzie and Ware 1993]. As machine learning
methods, such as recurrent neural networks (RNN) and long short-
termmemory (LSTM), gain popularity for processing and predicting
interactions, their effectiveness is contingent on a consistent data
input stream without gaps. Consequently, the current understand-
ing of the impact of the different infilling methods on the quality
of these LSTM and RNN models.

Diverse interactive systems leverage eye tracking to enhance
functionality, encompassing applications like directmanipulation [Lis-
chke et al. 2016; Pfeuffer andGellersen 2016], action prediction [Zhang
et al. 2022], and gestures [Drewes and Schmidt 2007; Zhang et al.
2017]. Recent advancements have seen these systems incorporat-
ing neural networks to refine traditional feature extraction meth-
ods, as demonstrated by studies such as [Aftab et al. 2020; Zhang
et al. 2022]. However, the inherent challenge lies in the neural
networks’ limited capacity to handle missing information during
blinks effectively. Consequently, prevalent strategies for dealing
with data loss from eye trackers involve either excluding data with
blinks, as observed in [Ekman et al. 2008; Gunawardena et al. 2019;
Wang et al. 2021], or attempting to fill in the missing information,
as explored by Stein et al. [2022], utilizing use-case-specific and
device-specific approaches. Regrettably, these studies often neglect
concerns of reproducibility and generalizability, omitting evalua-
tions of the impact of fine-tuning, such as specific parameters for
infilling methods. Moreover, blinks introduce artifacts into the re-
tained eye tracking data, and despite their acknowledged presence
in the literature [Abel et al. 1983; Collewijn et al. 1985; Epelboim and
Suppes 2001], present-day systems frequently overlook addressing
these artifacts, leading to a general tendency to ignore the affected
input. Consequently, there is an imperative need to establish a com-
prehensive and consistent pre-processing approach for eye tracking
data to ensure the reliability and validity of interactive systems
utilizing eye tracking.
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Evaluating the impact of these different infilling methods on
openly available datasets will bring an understanding of potential
generalization issues and will allow us to formalize recommenda-
tions to overcome them. Therefore, future work will know which
of these infilling methods to apply without interfering with the
output of their machine learning models. Thus, we have used the
recommended infilling methods from Grootjen et al. [2024] on an
openly available dataset from Annerer-Walcher et al. [2021]. By
using their data and model structure, we can observe the impact of
the different infilling methods on the accuracy of the LSTM model.

In this work, we found that linear and cubic spline interpolation
over missing values and gaps in eye tracking data has a major
impact on the classification accuracy of their LSTM model, to the
point that overfitting occurred. This highlights the importance
of further investigation into the impact of interpolation methods
on the accuracy of LSTM or RNN models of different datasets to
investigate generalizability.

2 RELATEDWORK
First, we provide a short overview of the reasons for blinks and how
blinks are used in systems for human-computer interaction (HCI).
Next, we provide insight into different ways of blink detection.
For the final part of our related work, we provide various ways of
dealing with these blinks for machine learning methods.

2.1 Reasons for Blinks
Blinking is “a temporary closure of both eyes, involving movements
of the upper and lower eyelids” [Blount 1927]. Human adults blink
on average 12 times per minute, and one blink lasts roughly one-
third of a second [Fatt and Weissman 2013]. Blinks protect the eye
from drying out and regularly replenish the precorneal tear-film.
However, there are a large variety of factors impacting the blink
frequency of a human outside of these responsibilities, including
but not limited to the time of day [Stern et al. 1994], the presence
of air pollutants [Stern et al. 1994], monitors [Patel et al. 1991],
contact lenses [Collins et al. 1989], perceptual load [Brookings
et al. 1996; Tsai et al. 2007; Van Orden et al. 2000; Wolkoff et al.
2005], age [Stern et al. 1994], psychoticism [Colzato et al. 2009],
and individual differences [Doughty and Naase 2006].

Various human-computer interaction (HCI) studies use blink
data in interactive systems such as lie detection [Leal and Vrij
2008; Mann et al. 2002], driver fatigue detection [Bergasa et al.
2006; Hernandez-Ortega et al. 2019b], detection of mild cognitive
impairment [Ladas et al. 2014], anti-face spoofing [Galbally et al.
2014; Hernandez-Ortega et al. 2019a; Pan et al. 2007], and human-
computer interfaces [Acien et al. 2020] among many others. How-
ever, as the frequency of blinks is influenced by many factors, the
accuracy of these interactive systems can be heavily impacted.

2.2 Dealing with Blinks
Grootjen et al. [2023] highlights the importance of consistently
handling missing data as it hinders the development of effective
intelligent systems, limits reproducibility, and can even lead to
incorrect results. Although there are various parsers available for
detecting and dealing with blinks, in Grootjen et al. [2024], the
authors found that these are not always used and that the general

way of dealing with blinks in eye tracking data is inconsistent.
Furthermore, they compare different infilling methods for missing
data and the error these methods produced in a set of artificially
introduced blinks. In their work, the compared infilling methods
were extracted from a literature review. They found that linear
and cubic spline interpolation within the missing data produced
the slightest error and that artifacts from blinks affect the eye
movements 70 ms preceding and 118 ms following a blink.

2.3 Long Short-Term Memory Neural Networks
Long short-term memory (LSTM) is a deep neural network architec-
ture that can classify time-series data. This technique benefits over
traditional machine learning as it does not require domain-specific
knowledge as it benefits from representation learning. This might
be the reason for its rise in popularity in the physiological signal
space. An example is the work of Pham [2021]; here, they used it for
classifying ECG data. Moreover, it has also been gaining popularity
in the eye tracking community (e.g., Bremer et al. [2023]; Hassan
et al. [2022]; Palacios-Ibáñez et al. [2023]; Stein et al. [2022]).

3 METHOD
We base our analyses on the data and scripts from Annerer-Walcher
et al. [2021] to evaluate the different infilling methods. We selected
this dataset as, from their work, they provide both their data and
model structure open-source on https://osf.io/scmry/. Their dataset
consisted of binocular eye tracking data, including x and y-screen-
based coordinates and pupil dilation. It contains information on
conditions internal and external focus vs. verbal, numerical, and
visuospatial tasks (two conditions × three tasks). They investigated
how consistently different eye parameters respond to internal ver-
sus external attentional focus across the three task modalities (ver-
bal, numerical, and visuo-spatial). They report that classifying the
focus of attention worked well across participants but that general-
izing it across the different tasks had proven challenging.

We use their data and model structure to evaluate the impact of
the different infilling methods from peer-reviewed work. As such,
we ran their scripts in 3 fold, once without changes, once where
we linearly interpolated the gaps and once where the interpolation
was done using a cubic spline method, without altering their scripts
to preserve the validity of our work. These are the recommended
infilling methods as by Grootjen et al. [2024]. Following those guide-
lines, we removed 70 ms preceding and 118 ms following missing
data, as the blink can affect these. We used scripts containing the
interpolation methods and removed the data preceding and follow-
ing a blink from Grootjen et al. [2024], as these are openly available
on https://eyetrackingguidelines.github.io/.

3.1 Pre-Processing the Data
To preprocess the data, we leveraged the existing scripts from
Annerer-Walcher et al. [2021]. These existing scripts allowed us
to read the different files that are part of the main task. They also
provided training before the main task on their open-science frame-
work repository. Even though we could not find in their code that
this explicitly was excluded, we assumed it was and thus only used
the files from the main task. The SMI RED250mobile system (Senso-
Motoric Instruments, Germany) with a temporal resolution of 250
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Hz, a spatial resolution of 0.03◦, and gaze position accuracy of 0.4◦
that they used for their experiment, writes 0 in the file whenever
the eye tracker cannot find the pupil1. To leverage the existing
scripts for interpolation from Grootjen et al. [2024], we replaced all
of the “zeros” with “Not a Number’s” (NaN).

3.2 Missing Data
Figure 1a presents the results of the consecutive NaN’s logged. In
the work of Grootjen et al. [2024], they showed that the closed
eye time does not go beyond 1 second. As such, we have split the
dataset into different parts once this happens, as the assumption
here would be that there is missing values for other reasons than a
blink. When looking at the remaining consecutive NaN’s in the data
we can see that this follows a similar pattern as the one visualized in
Grootjen et al. [2024]; Holmqvist et al. [2011]. We use a Generalized
Inverse Gaussian distribution [Perreault et al. 1999] to model the
distributions of the lengths, see Figure 1b. Our regression models
yielded an 𝑅2 value of 0.51.

3.3 Gaps in the Recording due to Eye-Tracker
When visualizing the data, we found jumps in time that do not
follow the 8 ms gap of the 125 Hz recording. Jumps in time between
samples were on average 11.9 ms long with a standard deviation of
234 ms. In Figure 2, we visualize the number of seconds between
two lines being logged into the different files in seconds that are
over 8 ms (+ 10%). In total, the dataset contains 78.755 gaps in
recording that are over this limit (m = 1324.9 ms, std = 4076.2 ms).

While sensors, such as eye trackers, deliver samples at a given
frequency, the time is typically not precise. It can even happen
that one or multiple consecutive samples are arbitrarily dropped.
For this reason, we standardize the sampling frequency to perfect
125 Hz to counteract these gaps in the eye tracking data. Thus, we
resampled the data to be exactly 1/𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 8𝑚𝑠𝑒𝑐 apart. This
allows us to investigate potential missing samples and gaps in the
data and, thus, test infilling methods. During this process, we did
not infill data; we merely ensured a perfect sample frequency of
125 Hz. If a sample was missing in the original dataset, the data was
added at the correct time and marked as NaN for later processing
using the different infilling methods.

4 RESULTS
In total, the dataset has 78.755 gaps in the recording where the eye
tracker did not log any data and 52.219 sections of data where there
were consecutive 0’s (by us converted to NaN’s) logged because the
eye tracker was not able to recognize the pupil. We then resampled
the data frame to allow for consistent steps in time according to the
125 Hz logging in the remaining of data. We then split the dataset
in parts where there were more than 1500 consecutive NaN’s in the
dataset as the long short-termmemory (LSTM) neural network (NN)
provided by Annerer-Walcher et al. [2021] takes in a window of
1500 samples. In the initial dataset, having 1500 or more consecutive
0’s happening only existed nine times; after our pre-processing,
this happened 1198 times.

We infilled the dataset linearly and used cubic spline to fill in the
remaining gaps in the data. For the cubic spline infilling, we take
1https://www.dpg.unipd.it/sites/dpg.unipd.it/files/BeGaze2.pdf, accessed 2024–04–05

three samples at the start and end into consideration to allow the
cubic spline interpolation to consider the velocity. If there was a gap
of a single sample during the cubic spline interpolation, we linearly
interpolated this, as cubic spline interpolation is not warranted in
these scenarios. If there are NaN’s in the 3 samples before or after
the gap, we recusively go back or forward, respectively, until we
find the allotted samples without NaN’s. After interpolating, we
had 3 datasets, one as provided and processed exactly by Annerer-
Walcher et al. [2021], one linearly interpolated, and one cubic spline
interpolated. These interpolation methods were applied over x and
y screen-based coordinates for both eyes and the pupil dilation
values for both eyes. Both of the interpolated datasets were without
any missing samples or NaN’s remaining.

In the work of Annerer-Walcher et al. [2021], they have used
157 participants from the whole dataset and excluded 9. Of this
data, 135 sessions were used as training data to adjust the model
parameters, and the remainder were used as testing data, pooling
data from all tasks. Unfortunately, we could not identify in their
publication or from the OSF page which participants were excluded
and which sessions were used for which purposes. As such, we
split the whole dataset, using a fixed seed, based on all participants
(166), using 60% of the participants (99) for training, 20% for testing
(33), and 20% for validation (33). We used the existing processing
scripts after the infilling to generate the input for the LSTM model.
We left the model’s hyperparameters unchanged in the code.

As such, our model starts with the input layer of 1500 × 16,
followed by an LSTM layer of 64 units, after which there was a
dense layer present of 64 units with a ReLu activation function with
a dropout layer of 0.45 following the dense layer. After the dense
layer, the model contains a convolutional layer followed by a max
pooling layer as 1D. The final two layers contain another LSTM
layer of 32 units and a final dense layer of 2 for the output. The
model uses a nadam optimizer with a fixed learning rate of 0.001.
The models were trained over 40 epochs in batches of 30 with an
early stopping rule and a patience of 3 on the validation loss.

Our reference model yielded a training accuracy after five epochs
of 0.8713, a test accuracy of 0.7699, and a validation accuracy of
0.7863. We achieved this with 6813 sets of windows for training,
2490 sets for testing, and 2176 sets for validation for 11,479 sets
of windows. The model after linear interpolation yields a training
accuracy after six epochs of 0.8834, a test accuracy of 0.7732, and
a validation accuracy of 0.7946. We achieved this with 8765 sets
of windows for training, 3157 sets for testing, and 2795 sets for
validation for 14,717 sets of windows (28.2% more data over de-
fault). Our final model using spline interpolation yields a training
accuracy after seven epochs of 0.9023, a test accuracy of 0.7555,
and a validation accuracy of 0.7599. For this, we had 8732 sets of
windows for training, 3141 for testing, and 2790 sets for validating
(27.7% more data over default).

5 DISCUSSION
In this work, we applied two recommended interpolation methods
from past work used to infill the missing data on a publicly avail-
able dataset. Our findings show that these interpolation methods
over missing data points and gaps in data recording have major
implications for the accuracy of the LSTM model provided with
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(a) Consecutive NaN’s (b) Closed Eye Time

Figure 1: (a) The log-scaled distribution of consecutive NaN’s appearing the data. (b) We visualize the normalized frequency
closed-eye time for the dataset. The dashed line represents an inverse Gaussian probability density function fitted to the data
(𝑅2 = 0.51)

Figure 2: Illustration highlighting the interval (time between) of the logged samples over 8.8 ms (which should be the normal
interval of a 125 Hz recording + allowance of 10% in variation).

(a) Default (b) Linearly Infilled (c) Cubic Spline Infilled

Figure 3: The train and test accuracy for the three models we trained. (a), shows the training and validation accuracy plotted for
the default dataset. (b) and (c) show these for the linearly interpolated data and cubic spline interpolated data, respectively.
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(a) Default (b) Linearly Infilled (c) Cubic Spline Infilled

Figure 4: Confusion Matrices from all the predictions on the validation sets (20% of the participants) using the provided model
structure and input length. (a), shows the confusion matrix for the default dataset. (b) and (c) show these for the linearly
interpolated data and cubic spline interpolated data, respectively.

the dataset. To the point that overfitting happens if we keep the
original model structure.

Overfitting happens due to a modeling error when a function is
too closely aligned to a limited set of data points. As a result, the
model is useful only for reference to the initial data set and not to
other data sets. In other words, it is not generalizable. We can see
this in Figure 3, where the models all have an increase in training
accuracy, while the test accuracy is almost stationary. We expect
this to be in part related to not being able to reproduce the results
of the previous work completely, as the exclusion of participants
was not available to us, and neither was the split in data used for
training and test purposes. Furthermore, the work documentation
suggests that the experiment was recorded at 250 Hz, while the
published data set suggests this was recorded or down-sampled to
125 Hz.

Infilling data comes at the “cost” of knowing the future sample.
Only gaps can be interpolated using infilling methods. However, in
interactive systems, this is not always the case; e.g., during a blink,
a future sample for interpolation is not known. For this, we will
need to experiment with extrapolation methods. Extrapolation in
interactive systems is nothing novel and has even been done using
neuronal networks for touch input [Henze et al. 2017]. However,
a future real-time implementation of our approach will need to
address the challenges of the “unknown” future.

6 CONCLUSION
In conclusion, interpolation methods are powerful for handling
missing data and gaps in eye-tracking studies. We argue that the
recommended interpolation methods should be preferred over leav-
ing gaps in the recording or removing that data, as these can have
huge implications on the available data as highlighted in Grootjen
et al. [2024]. Both linear and cubic spline interpolation provide
ways to improve the provided model’s accuracy. Here, tweaks could
boost the accuracy even further without overfitting the model on
the training data, as there is an increase of over 25% in data available
for the model. Future work should investigate the generalizability
to other datasets.
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