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ABSTRACT

Extensive sitting is unhealthy; thus, countermeasures are needed to
react to the ongoing trend toward more prolonged sitting. A variety
of studies and guidelines have long addressed the question of how
we can improve our sitting habits. Nevertheless, sitting time is still
increasing. Here, smart devices can provide a general overview of
sitting habits for more nuanced feedback on the user’s sitting pos-
ture. Based on a literature review (N=223), including publications
from engineering, computer science, medical sciences, electronics,
and more, our work guides developers of posture systems. There
is a large variety of approaches, with pressure-sensing hardware
and visual feedback being the most prominent. We found factors
like environment, cost, privacy concerns, portability, and accuracy
important for deciding hardware and feedback types. Further, one
should consider the user’s capabilities, preferences, and tasks. Re-
garding user studies for sitting posture feedback, there is a need
for better comparability and for investigating long-term effects.

CCS CONCEPTS

• Human-centered computing→ HCI theory, concepts and

models; Ubiquitous computing; • Hardware → Sensor devices
and platforms.
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1 INTRODUCTION

We sit for a large part of the day, for example, while working, rid-
ing the bus, watching television, or browsing social media. Sitting
and the more often studied sedentary behavior — a broader term
including sitting, reclining, and lying postures with low energy ex-
penditure [230] — negatively affect our health [42, 178, 211]. Thus,
there is a concern about the development of more sitting-focused
lifestyles. Prior work already addresses this issue by proposing
various methods to reduce it, breaking it up with physical activ-
ity, e.g., [50, 98, 100, 210], or standing up [25, 72, 87, 163]. These
countermeasures are not always possible, or only to some extent,
depending on the person’s abilities, task, and environment. Lam
et al. [114] investigated the option of reduced sedentary behavior.
They found that interventions targeting the physical environment,
such as sit-stand desks [218] or novel furniture [41, 182], reduce
sedentary behavior most effectively, followed by interventions tar-
geting personal behavior, like consultations or apps. Today’s guide-
lines [153] suggest an upright posture, commonly viewed as health-
ier [5, 106, 113, 217, 246]. However, recent research suggests that the
importance lies in the frequent change of sitting postures [24, 243]
reflected in the guideline by the National Library of Medicine [153].

Supporting people to sit healthier through a smart system thus
requires the ability to recognize their sitting posture and com-
municate the necessity of posture change through feedback. A
large body of prior work addressed these challenges by propos-
ing computer-supported recognition of postures and guidance for
better poses. There have also been reviews about sitting posture
recognition [97, 160, 229]. Tlili et al. [229] found and compared tech-
niques using weight, tilt angle, spine curvature, and combinations
of multiple sensor types to get information about a user’s posture.
They provide an extensive table of publications with details, such as
the type and number of sensors and the used communication tech-
nology. Kappattanavar et al. [97] systematically reviewed hardware
and classification methods for sitting posture recognition. They
found pressure sensors and neural networks to be the most preva-
lent sensor types and classification methods. The authors suggest
using Inertial Measurement Units (IMUs) for classification and 3D
cameras to gather ground truth data and further propose five basic
sitting postures due to the lack of a standard definition. Most re-
cently, Ordean et al. [160] conducted an Analytic Hierarchy Process
(AHP) analysis comparing six types of posture detection (e.g., visual
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Figure 1: A diagram of the process of the presented literature review. For each publication included in the review, we screened

references and citations for new papers to include. For all works found this way, we subsequently performed the same search.

inspection systems) based on seven criteria, such as accuracy and
privacy. They conclude that the ideal solution is finding the user’s
mass center and upper-body tilt. Giving feedback about posture has
also been studied extensively, exploring various modalities such as
vibration, sound, visualizations, and hardware that actively corrects
the user’s posture. However, we are unaware of a review of this
body of work.

We contribute a broad literature review of sitting posture recog-
nition and feedback, which we hope will guide future research in
computer-supported sitting guidance. Our work expands previous
reviews about recognition by a larger number of included publica-
tions. Further, our review is, to the best of our knowledge, the first
review of feedback for sitting posture. In detail, we conducted a
seed-paper-driven literature review covering sitting posture recog-
nition hardware and feedback. Upon identifying a publication as
relevant for our review, we searched through its citations and ref-
erences to find further relevant papers. We found 223 papers that
addressed these challenges in their publications. We categorize the
publications and showcase them in both textual and tabular form.
The papers we found cover a wide range of research areas, like com-
puter science, human-computer interaction, health, engineering,
sensors, bioengineering, and more, see Figure 2. The widespread
attention given to recognizing and providing feedback on sitting
posture emphasizes the need for a broad overview incorporating
knowledge from various research fields.

Our literature review uncovered a large body of work addressing
how posture can be captured and how feedback should be commu-
nicated. We found a large variety of methods and combinations
thereof being explored for both. Pressure sensors are the most com-
monly used hardware, and visual is the most common feedback
modality with many techniques such as charts, sketches, physical
objects, and more. We concluded that the most suitable hardware
depends on the use case, cost, privacy concerns, portability, and
accuracy. Many publications report high accuracies for automati-
cally classifying postures. We refer to [97, 229] for reviews of this
aspect. We found a large body of work exploring feedback about
sitting postures, suggesting advantages for all feedback modalities
and various types of visual feedback. We argue that all modalities
and types have advantages, depending on the environment and the
users’ abilities, circumstances, and preferences. The 64 user stud-
ies of sitting posture feedback we examined showed a generally
positive reception by users and a positive influence on their sitting
behavior. We also found, however, the need for long-term studies
and more comparability between approaches and suggest open

questions we see toward this goal. In sum, the main contribution of
this work is the overview of sitting posture recognition and feed-
back, revealing possible directions for future work on improving
people’s health while sitting.

2 METHOD

We conducted a seed-paper-driven literature review; see Figure 1
for a diagram of our approach. Upon identifying a publication
as relevant for our review, we searched through its citations and
references to find further relevant papers. This resulted in 223 pub-
lications about sitting posture recognition (222) and feedback (104),
published between 1968 and 2022. The distribution of the papers
over time can be seen in Figure 2. This reveals a gap of over 20
years after the first works in the seventies and yearly publications
only after 2005. As a first step, we performed a manual keyword
search in the online databases Google Scholar1 and Connected
Papers2. The keywords we searched for were “sitting healthy”, “sit-
ting posture”, “sitting time”, “prevalence of sitting”, “sitting posture
recognition”, “smart chair”, and “sitting posture feedback”. This ini-
tial search resulted in a small collection of seed publications about
sitting, sitting posture recognition, and sitting posture feedback
[9, 63, 74, 107, 134, 157, 175, 189, 236, 245]. The same searches were
conducted again a few times over three months, as suggested by
Rogers and Seaborn [183]. For every relevant publication added
to our review, we searched through its citations and references to
find further relevant papers. This process resulted in 11284 scanned
papers. We repeated this process for all relevant papers until we
could not find any additional papers relevant to sitting posture
recognition and feedback. Further, we checked whether the most
recent publications were cited by newly published work. The last
check was done in November of 2022. To guarantee a clean sam-
pling process, we re-examined all included publications after the
completed analysis with the sharpened definitions and understand-
ing that has evolved. This resulted in three papers being removed
from the feedback part of the review and one that was excluded
completely.

We had several exclusion criteria to keep our review focused
and manageable. First of all, we excluded papers investigating non-
sitting postures such as general body posture, hand posture, or
posture while running, e.g., Liao et al. [125]. Although related, we
want to provide a more focused overview of postures related to
sitting. Second, we also excluded papers about posture analysis

1https://scholar.google.com/
2https://www.connectedpapers.com/

https://scholar.google.com/
https://www.connectedpapers.com/
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Figure 2: Overview of the publications in the review. The distribution of sitting posture recognition and feedback papers over

the years (left) and the research areas represented in the review (right). The colors are based on the work by Wong [247].

methods such as RULA [141], used to investigate ergonomics of
workplaces, and SEAT [168], which is concerned with injury risk
while interacting with software. Third, publications presenting sys-
tems that measured humans’ sitting behavior for other reasons than
determining sitting posture were also not included, e.g., Iskandar
et al. [86]. Further, we excluded papers that did not focus on sitting
posture but on sitting time. Examples are approaches to breaking
sitting time up or reducing it [9, 18, 43, 87, 177, 213]. Although the
goals are similar from a health perspective, the data is different (i.e.,
sitting postures do not have to be differentiated), and with smart de-
vices, widespread commercial solutions already exist. Nevertheless,
providing such feedback is important, and there is still room for
improvement. We want to highlight one publication by Jafarinaimi
et al. [87] that, although only using sitting time, created visual feed-
back through a physical object that would also be suitable for sitting
posture recognition. Finally, we excluded publications that did not
provide enough details about their feedback to allow comparison
with other approaches.

The discovered papers were clustered by the topics sitting,
postures, pressure sensors, other hardware, actively chang-
ing the user’s posture, sitting posture feedback, feedback
for different postures, and meta/ review. To cluster, we first
read the abstract and then, if necessary, the entire publication. We
used a web-based whiteboard tool3 to display the papers and their
connections colored according to their categorization. We decided
not to use a database query approach for two main reasons: The
various terms used to describe sitting posture recognition and the
spread of the topic over many research areas (see Figure 2). The
variety of used terms can be shown with a small example. If we
only consider the eleven papers in our review whose title start with
“posture”, there are seven different words we find synonymous with
“recognition” for this work: detection, estimation, monitoring, pre-
diction, sensing, tracking, and training. Words such as “sitting” or
“sedentary” only appear in the titles and keywords of three of these
papers. However, the only keyword not mentioning sitting, namely
“smart chair”, would only discover two of the eleven papers. This
variety of terms makes it challenging to find publications about
this topic using only keywords. Because of the many research ar-
eas that cover sitting posture, a database query approach might
inadvertently exclude publications, especially when limiting which
databases are being searched. Thus, we chose to take a “multi-part

3https://miro.com

contribution” [212] approach. Stefanidi et al. [212] argue that such
an approach “allows for addressing a wide variety of different as-
pects without going beyond the standard publication length,” which
aligns with our goal to provide a broad overview of the topic at
large. While our review might not be exhaustive, we believe it to
provide a representative overview of the research on sitting posture
recognition and feedback.

Please refer to the supplemental material for a list of all reviewed
publications, the data and code for the presented and additional
charts, and detailed recognition, feedback, and user studies tables.

3 SITTING POSTURE RECOGNITION

There is a plethora of work exploring technologies with which
sitting posture can be detected (222/223). Although pressure sensors
are the most prevalent (97/222), the most fitting solution depends
on the specific use case. In order to avoid disturbing someone with
too many notifications while reminding them to change their sitting
posture and take breaks, it is vital to understand how they are sitting
and for how long. Manually scoring sitting postures [201, 202]
or giving in-person training [45] is not feasible on a larger scale
because of the required time and human resources. Hardware and
automation are required to detect and differentiate between sitting
postures to make sitting posture recognition and feedback scalable.

While many of the publications report considerably high accu-
racy, comparing this aspect is outside the scope of this work and,
so we believe, will prove to be a difficult task, as many fundamental
aspects of these systems are very heterogeneous. Defined postures
range from differentiating between good and bad (e.g., [227]) to the
definition of 30 individual postures [46]. Classifications range from
comparing sensor values to thresholds (e.g., [117]) to various ma-
chine learning approaches (e.g., [126, 236]). For an extensive review
of sitting posture monitoring systems and different classification
approaches, we refer the reader to the reviews by Tlili et al. [229]
and Kappattanavar et al. [97].

This extensive research area overview covers the hardware used
in 222 papers. We categorized them based on the type of mea-
surements used to recognize sitting postures into pressure sensors,
motion sensors, vision-based setups, distance sensors, deformation
sensors, and combinations. We put setups that we could not clus-
ter any further into the category other. The intersection between
recognition and feedback approaches can be found in Table 1, and

https://miro.com
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Table 1: Combinations of hardware and feedback approaches of the papers in our literature review. The feedback modalities

are active (AC), aural (AU), vibrotactile (VIB), and visual (VIS). Publications not featuring feedback or not using hardware

fall under not applicable (N/A). Note that publications featuring more than one feedback modality appear in multiple rows.

Hardware ×
Feedback

AC (14) AU (32) VIB (33) VIS (69) N/A (119)

Pressure

Sensors (97)
(5)
[63, 137, 154,
167, 196]

(5) [7, 40, 140,
149, 206]

(12) [7, 28, 67,
70, 81, 82, 129,
175, 186, 206,
232, 262]

(21) [6, 7, 40, 67, 70, 115, 131,
140, 143, 148, 164, 172, 179,
186, 196, 209, 224, 232, 240,
241, 255]

(64) [1–3, 9, 14, 16, 21–23, 29, 30, 32, 35,
39, 55, 59, 61, 62, 65, 66, 71, 76, 77, 79, 80,
83, 88, 95, 103, 104, 110, 122, 126, 130, 133,
136, 138, 139, 142, 152, 169, 176, 177, 184,
185, 189, 193–195, 204, 205, 216, 220–222,
226, 236–238, 254, 256, 260, 265, 266]

Motion

Sensors (36)
(1) [105] (10) [27, 31,

105, 123, 124,
159, 180, 227,
239, 251]

(10) [27, 94,
111, 112, 123,
124, 170, 171,
198, 239]

(12) [27, 31, 74, 105, 123, 124,
156, 159, 170, 198, 227, 239]

(18) [54, 68, 69, 96, 108, 127, 134, 145, 161,
166, 181, 187, 192, 203, 223, 228, 234, 248]

Vision-

based (31)
(4) [13, 85,
200, 253]

(5) [36, 64,
150, 162, 214]

(1) [85] (12) [15, 47, 58, 64, 85, 89,
102, 150, 162, 225, 242, 245]

(14) [34, 38, 46, 73, 90, 107, 128, 135, 144,
208, 215, 250, 252, 257]

Distance

Sensors (9)
(1) [199] (3)

[4, 116, 155]
(1) [116] (1) [4] (5) [19, 56, 57, 99, 119]

Deformation

Sensors (8)
(2) [17, 157] (2) [44, 157] (5) [8, 48, 49, 93, 173]

Other (17) (2)
[197, 231]

(4) [11, 45, 52,
258]

(2) [52, 158] (10) [45, 60, 165, 201, 202,
207, 219, 231, 259]

(2) [190, 233]

Combi-

nations (25)
(1) [117] (5) [75, 120,

174, 249, 267]
(5) [109, 117,
263, 264, 267]

(12) [12, 37, 51, 75, 84, 109,
117, 118, 151, 174, 263, 267]

(10) [10, 20, 53, 78, 92, 121, 132, 188, 191,
261]

N/A (1) (1) [101]

a detailed view of the hardware can be found in the supplementary
material.

3.1 Pressure Sensors

Pressure sensors are the most commonly used hardware in the
literature to detect sitting posture (97/222). While we found one
instance where a pressure sensor was worn [204], they were gen-
erally attached to a chair. The term pressure sensor is rather broad,
including sensors of various forms and functions. The most com-
mon (85/97) are pressure sensors that are thin and flexible and can
be sat on directly without the user noticing. They use materials that
change voltage or resistance when mechanical pressure, force, or
stress is applied, for example, through their piezoelectric, piezoca-
pacitive, or piezoresistive properties. There are many variants, such
as flex sensors, textile pressure sensors, and Force Sensitive Resis-
tors (FSRs), which we summarized as Thin and Flexible Pressure
Sensor (TFPS). They can be placed anywhere without being noticed
by the user and have thus been used the most for sitting posture
recognition. The form of these sensors varies, ranging from larger
ones that cover the entire seat of a chair to smaller ones that are
distributed sparsely over its surface. They can be placed on top, be-
low, or inside of cushioning. Typical placement options in research
were on a chair’s seat (e.g., [95, 115]), backrest (e.g., [29, 110]), or
both (e.g., [95, 115]). They can also be integrated into a portable pad

that does not bind the setup to a specific chair [29, 81, 82, 110]. In
one case, sensors were placed on the seat, backrest, and the chair’s
armrests [30]. Cheng et al. [35] followed a different approach by
placing pressure sensors below a chair’s legs.

Other pressure sensingmethods include sensors that measure the
air pressure inside bladders on which the user sits (e.g., [137, 138])
and a device that bends an optical fiber when someone sits on
it [224]. The applied pressure can then be measured through the
effects on the transmitted light. Others used load cells [23, 184, 185]
and force transducers [70, 194, 195]. These sensors use rigid metal
bodies that deform through applied forces such as pressure. This
deformation is then measured through an electronic component,
such as a strain gauge. They are placed beneath a plate or board
for sitting posture detection, as they would be uncomfortable to
sit on. Some put such sensors between the seat and the base of
a chair (e.g., [194, 195]), while Roh et al. [184] put them below a
removable cushion, and Bibbo et al. [23] placed load cells in 3D-
printed enclosures and customized the frame of a chair to attach
them.

The placement of pressure sensors on a chair’s seat is the most
promising approach, whereas sensors on the backrest offer sup-
plementary data but require user contact. Pressure sensors are
affordable (costing less than 10 USD) and readily available, with
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(a) Hong et al. [74], ©ACM 2015 (b) Feng et al. [56], ©IEEE 2019

Figure 3: Examples of motion and distance sensors for sitting posture recognition: (a) a gyroscope attached to the upper back

and RFID tags on the lower, middle, and (b) upper back with the corresponding antenna attached to the backrest of a chair

.

comprehensive software integration support. They operate inde-
pendently of various users, rooms, or tables, ensuring comfort;
however, most implementations presented in the literature cannot
be easily attached to different chairs. Furthermore, they face chal-
lenges in their assembly process due to their limited coverage of
the user’s contact area, which means they only utilize a fraction of
the user’s body weight to determine their posture. Larger sensor
matrices can mitigate this effect but come with increased cost.

3.2 Motion Sensors

Sensors that measure movement are the second most common
(36/222) technology to recognize sitting posture in the literature.
They include accelerometers (e.g., [111, 248]), Inertial Measure-
ment Units (IMUs) (e.g., [227, 239]), gyroscopes [54, 74, 234], linear
displacement sensors [108, 166], and angular displacement sen-
sors [112]. They were usually worn (see, for example, Figure 3a),
but Otoda et al. [161] and Mizumoto et al. [145] attached them to
a chair. Worn approaches are chair-independent; they allow users
to switch chairs and detect sitting posture regardless of the object
they are sitting on. Unlike pressure sensors, motion sensors do not
require direct contact with the chair, such as the backrest, enabling
pose evaluation without touching the chair’s surface. Furthermore,
they are affordable (under 5 USD), commercially available, compact,
and less sensitive to placement position than pressure sensors. How-
ever, wearing them might cause discomfort to the user and require
a more complicated calibration process than pressure sensors.

3.3 Vision-Based

We found vision-based setups, such as those using a Microsoft
Kinect (e.g., [47, 252]), to be the third most commonly used tech-
nology (31/222) for recognizing sitting posture. Others opted for
cameras with various recognition approaches, such as face detec-
tion (e.g., [150, 242]), silhouette extraction [89, 90, 135], the use of

OpenPose [34, 250], motion capturing [64], and deep learning [107].
Vision-based approaches are chair-independent, providing maxi-
mum comfort with a setup placed next to the user. The setup is more
straightforward than other approaches and can track arm positions.
However, vision-based approaches entail using cameras, which
are pricier than alternative solutions. Privacy and confidentiality
concerns may also arise, and comparatively high computational
demands are associated with this method.

3.4 Distance Sensors

Recognizing posture through distances has been done (9/222) with
Radio-Frequency Identification (RFID) tags [56, 57, 119] (see, for
example, Figure 3b), ultrasonic sensors [4, 155], depth sensors [19,
116], Lidar [99], and HTC VIVE Pro trackers [199]. These distance-
measuring sensors can either be worn or placed stationary. This
flexibility allows users to choose their preferred trade-off between
comfort and the option to use the same sensors in different envi-
ronments. Ultrasonic and depth sensors are cost-effective (under
15 USD) and readily available commercially. Lidar sensors can be
used over greater distances but are more expensive and larger than
the other options. Unlike vision-based approaches, distance sensors
pose fewer confidentiality and privacy concerns, and processing
their signals is less computationally demanding.

3.5 Deformation Sensors

We found seven (7/222) publications that determined sitting pos-
ture through sensors that measure deformation, such as bend-
ing or strain. These included flex sensors [8, 44, 157], strain sen-
sors [17, 173], optical fiber sensors [48, 49], and a charge-generating
fabric [93]. Deformation sensors are easy to find commercially and
come at an affordable price (under 10 USD). They are usually worn
on the user’s clothing or skin and offer similar benefits to other
types of wearable sensors. However, certain concerns need to be
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addressed when it comes to deformation sensors. For instance, is-
sues may arise if individuals of varying sizes use the same clothes
with attached sensors. Moreover, proper calibration is necessary,
and comfort-related problems can also occur.

3.6 Other

Other approaches (16/222) we found in the literature include the
above-mentionedmanual inspection (e.g., [45, 197]) and mechanical
switches [11, 158, 231, 259]. There have been single examples of
capacitive proximity sensors [60], an Electromyography (EMG)
setup [165], an inductive proximity sensor [258], electrodes [233],
and temperature sensors [190]. Except for the manual inspection
approach, these techniques have advantages and disadvantages
similar to the other recognition hardware types discussed above.
However, manual inspection requires either the user themselves or
other individuals to assess the user’s pose, placing demands on the
user’s mental resources or requiring additional human resources.

3.7 Combination of Sensor Types

In total, 25 of the 222 papers featuring recognition explored various
ways of combining different sensor types, such as accelerometers
with gyroscopes [249, 267] or a camera [53]. In one publication,
a tilt sensor was combined with ultrasonic sensors [174]; in an-
other, temperature and sound sensors were used together [191].
The majority (20/25) of combinations included a pressure sensor,
like El-Sayed et al. [51], who combined load cells with inclinometers.
Thin and Flexible Pressure Sensors (TFPS) have been combined with
ultrasonic sensors (e.g., [10, 37]), infrared sensors (e.g., [92, 264]),
Microsoft Kinect [84, 151], IMUs [132, 261], optical fiber-based bend
sensors [121], a camera [12], and with an accelerometer [78]. In
three publications, more than two different types of sensors were
combined. Kumar and Sridhar [109] used TFPS with temperature,
blood pressure, and pulse sensors, while Hong et al. [75] detected
posture with TFPS, gyroscope, accelerometer, and infrared sensors.
Finally, Benocci et al. [20] used TFPS, accelerometer, magnetometer,
altimeter, and temperature sensors. Combining different sensor
types naturally brings the advantages and disadvantages of both
approaches together. It can enhance a system’s accuracy and the
quantity and variety of collected information. However, it also in-
creases usage, setup, and overall cost complexity. Section 5 further
discusses the trade-off between simple and complex systems.

4 SITTING POSTURE FEEDBACK

As the previous section shows, a large body of research has been
conducted on various technologies and techniques to detect and
classify sitting postures. Giving users feedback about their posture
has also been studied extensively. Of the 223 papers we found, 104
describe sitting posture feedback. Researchers explored hardware
that actively adjusts itself to directly or indirectly correct the user’s
posture (14/104), as well as aural (32/104), vibrotactile (33/104), and
visual (69/104) modalities. Visual feedback is the most prevalent and
varied approach in the publications we found. However, according
to themultiple resource theory byWickens [244], non-visual modal-
ities could be beneficial for scenarios where the user’s main task
is highly visual, such as most office work. This part of the review
covers the 104 papers and their approaches to map the research on

sitting posture feedback. A table of all feedback publications can
be found in the supplementary material. The intersection between
recognition and feedback is shown in Table 1.

4.1 Visual Feedback

Visual is the most prevalent (69/104) approach for sitting posture
feedback in the literature, with a wide range of different types, like
ambient lights, text, sketches, and charts. We identified two main
categories of visual feedback for sitting posture: time of delivery
(time) and type. Regarding time, feedback is delivered in real-
time or summarized after a certain period. The different types
we found are text messages, sketch-like depictions, charts,
images or videos, physical objects such as ambient lights, and
other types, such as gamification. The following is separated into
summarized feedback followed by real-time feedback. A table
with details about the visual feedback of all publications can be
found in the supplementary material.

4.1.1 Summarized Feedback. One type of visual approach we iden-
tified gives the user summarized feedback about their sitting pos-
ture after a certain time. We found 24 of the 69 visual feedback
papers used such an approach, with charts being the most used
type (18/24). There are bar charts (e.g., [4, 27]), line charts (e.g., [109,
123, 156, 231]), area charts [231], and pie charts (e.g., [37, 60, 101],
see also Figure 4a). Others used dial charts to show the time spent in
different postures [7] (see Figure 4b) and the health-risk level of the
user [162]. Some examples of these chart types can be found in Fig-
ure 4. Furthermore, heatmaps were used to visualize the pressure
distribution [231, 240], with two cases using LEDs on a sketched
chair that were attached to the side of the chair [67, 232], as shown
in Figure 6a. Further, Bagalkot et al. [12] created a rounded star
plot, shown in Figure 4c, where each axis represents a characteristic
of the sitting posture, such as leaning left. They describe this as
an “amoeba-like blob” with the goal of easy readability at a glance
while riding a motorcycle.

Text messages (1) and sketch-like depictions (2) rarely have
been used for summarized feedback. El-Sayed et al. [51] sent daily
textual reports as emails to the user’s doctor for review. Sketches
have been used in the form of stick figures by Ribeiro et al. [179],
which depict different sitting positions and how much sitting time
the user spent sitting in them, while Yu et al. [259] used a sketch of
a person sitting at a desk with circles at the sensor positions. Those
circles were colored green if the respective sensor value was scored
as being at risk during a specific time frame. Wang et al. [241]
followed another approach and combined sketches with charts
by augmenting pie and bar charts with depictions of different pos-
tures. In three cases, physical objects were used for summarized
feedback [67, 186, 232]. They all used LEDs on a sketched chair that
was attached to the side of the chair. These LEDs could display the
most dominant postures of the previous half-hour; see Figure 6a
for one example.

Three publications used less common methods to give summa-
rized feedback. One is Khurana et al. [101], who used gamifica-
tion [26] in the form of badges that could be earned, such as “exer-
cise your neck for 3 minutes”, visible in Figure 5d. Further, Murata
and Shibuya [151] used a posture score, i.e., the proportion of time
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(a) Courtesy of and © by Khurana et al. [101] 2014 (b) Anwary et al. [7], ©IEEE 2020 (c) ©Bagalkot et al. [12] 2020

Figure 4: Examples of summarized visual feedback showing information about the user’s sitting posture through charts: a bar

chart showing time spent in different postures and a pie chart visualizing posture balance (a), a dial chart displaying time spent

in different postures (b), and a rounded start plot visualizing multiple sitting posture parameters, like head and shoulder tilt (c).

spent in a good sitting posture in the last hour, and a ranking com-
paring user’s scores. Finally, Min et al. [143] showed the user a
cartoon dog they had to keep healthy by adjusting their sitting
behavior. They used status bars to display various parameters. For
instance, if the user leaned too much toward the right, a bar indicat-
ing the dog’s saturation would decrease. If these bars decreased to
a critical level, the dog blinked, rotated its head, or panted. As the
user performed countermeasures, the dog’s animation responded
accordingly, and its status improved.

4.1.2 Real-Time Feedback. The more common (66/69) type of vi-
sual feedback we found is given in real-time. A small subset of 8
publications used images and videos to do so. For example, Taieb-
Maimon et al. [219] showed the user a picture of their current
sitting posture next to a previously taken reference picture after a
fixed time. Sigurdsson and Austin [201] and Sigurdsson et al. [202]
showed the users live video footage of themselves through which
they had to score their posture. Another approach was followed by
Taylor et al. [225], who used a large screen as a mirror, as shown in
Figure 5a. The live video was then augmented by highlighting the
parts of the user’s body that deviated from good posture or, as a
more general feedback, by displaying fog. Text messages have also
been used to give real-time feedback (19/66), including prompts
suggesting the user should change their posture, take a break, or
exercise (e.g., [4, 105, 115, 209]); see Figure 5c for an example. More
specific written suggestions on how to improve the current posture
were also given (e.g., [27, 148]), as well as encouraging messages
for sitting with a good posture [47].

We found 20 publications that explored the use of charts to give
real-time feedback, including straightforward approaches such as
bars being colored green or red depending on muscle activation [64,

165] or lines oriented according to the current angle of the user’s
lower and upper back [170]. Others used a line chart showing how
much the shoulders are bent [227] and dial charts displaying the
asymmetries of the current posture [6]. Jaimes [89] displayed a red
and green bar over which a black bar moved, representing the user’s
left-right balance. Wang et al. [241] used a scatterplot with circles
scaled according to the sensors’ pressure values. Some publications
feature heatmaps of the current pressure values [37, 255], with
Wang and Yu [240] creating a three-dimensional heatmap in the
form of a chair.

A total of 25 publications used sketch-like depictions to vi-
sualize their real-time sitting posture feedback. Kim et al. [102]
displayed a turtle with a bent neck, referring to the "turtle-neck syn-
drome," which is how sitting with a forward bent neck is referred
to in South Korea. Others used sketches of chairs with additional
information, such as a color-changing background [172], pressure
distribution percentages [7], or at-risk positions [259]. Demmans
et al. [44] proposed a face icon that changes its expression based
on the posture – it appears green and smiling when sitting upright
and red and crying when slouching. In another article, Lee et al.
[118] showed a human figure sitting upright or hunching to rep-
resent good and bad posture. Sketches of different postures have
also been used, such as by Breen et al. [31], who showed the user
their current posture and a red circle if it was considered unhealthy.
Zheng and Morrell [263] used sketches to show cues for improving
the current posture and sketches of a human’s back and legs with
colored circles where posture errors were detected. Further, Bap-
tista et al. [15] explored a virtual skeleton to show the user their
current posture and a suggested posture with arrows indicating the
necessary movements to reach it.
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(a) Courtesy of and © by Taylor
et al. [225] 2013

(b) © CC BY Luna-Perejón et al. [131] 2021 (c) ©Kiran et al. [105] 2021

(d) Courtesy of and © by Khurana et al. [101] 2014 (e) Hong et al. [74], ©ACM 2015

Figure 5: Examples of real-time visual feedback: using images and videos on a smart mirror where body parts that deviate

from good posture are highlighted (a), a sketched chair with a heatmap of the pressure combining Charts with sketch-like

depictions (b), utilizing Text messages through a desktop notification (c), an anthropomorphized giraffe with information

and suggestions about the user’s sitting posture (d), and an anthropomorphized flower enhanced through gamification (e).

Visual real-time feedback was also provided through physical
objects ranging from simple LEDs to complex objects that deform
according to the user’s posture. Of the 66 papers exploring real-
time feedback, 16 used physical objects. One such technique is
data physicalization, defined by Jansen et al. [91] as “a physical
artifact whose geometry or material properties encode data.” An
early approach by Daian et al. [40] introduced a physical agent
on the desk, which turned its back to the user if an inappropriate
posture was detected and moved from side to side to suggest a
break. Hong et al. [75] created a physical flower, shown in Figure 6c,
that can imitate the angle of the user’s back while changing the
color of its stem with LEDs from green to yellow as an analogy

of poor health. Ferreira et al. [58] developed an origami structure
that appears less symmetrical as the user’s posture deteriorates.
Another physical object that has been used is ambient lights.
Most approaches attach LEDs somewhere on the desk, which light
up or blink to give feedback about improper posture [4, 67, 117,
162, 174, 186, 232]. Lee et al. [118] encased lights in an ambient
display shaped like a cloud and moon and placed them next to
the computer display. The two elements glowed dimly if the user
sat in a low-risk posture and flashed red if in a high-risk posture.
The physical flower of Hong et al. [75] also uses ambient lights,
as described above. Others integrated LEDs into the clothes of the
user. Özgül and Patlar Akbulut [267] attached an LED to a vest,
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(a) van der Doelen et al. [232], ©NES 2011 (b) ©Soltani Nejad [207] 2018 (c) Hong et al. [75], ©ACM 2015

Figure 6: Examples of visual feedback using physical objects: LEDs on an enclosure attached to the side of a chair (a), LEDs

attached to a shirt’s sleeves and back (b), and an artificial flower that can bend its stem to mirror the user’s posture (c).

while Nishida and Tsukada [156] sewed LEDs into the sleeves of
a sweater and Soltani Nejad [207] into the sleeves and the front
of a shirt, as shown in Figure 6b. Wölfel [245] projected feedback
onto a wall before the user. They used an anthropomorphic flower
that imitates the user’s posture. Even though they work visually,
ambient lights and projections are more comparable to aural and
vibrotactile feedback regarding privacy, as other people around the
user could easily see their light.

We summarized eight less common approaches to visual real-
time feedback in the category other. Four publications present
more straightforward methods, such as Duffy and Smeaton [47],
who dimmed the monitor’s brightness if the users had a bad posture.
Others flashed the computer- [85] or smartphone- [123, 124] display
to alert the user of a bad sitting posture. Shin et al. [198] explored a
more complexmethod called “Relational Norm Intervention”, which
uses negative reinforcement and the desire of people not to disturb
others. They, therefore, introduce a second person called “helper”.
The helper’s phone gets blocked if the user sits in a bad posture
and does not change it after receiving a vibrotactile notification.
The helper can then send a push notification to the user, optionally
with a text message. Finally, Dib and Sturmey [45] let an instructor
model the correct posture to the participants.

Charts with sketch-like depictions were used together in
three cases. Wang et al. [239] combined a dial chart for the angles
of the back and head with a bell-shaped symbol. Min et al. [143]
used a cartoon dog and status bars as described above. Flutur et al.
[60] used a sketched human sitting on a chair with overlaid circles
representing the used sensors. These circles’ colors change based
on the sensors’ states, which were inactive, correct, moderate, and
incorrect. Three other publications combined a chair sketch with a
heatmap displaying pressure distribution [131, 140, 164], of which
one example can be seen in Figure 5b. Charts have been combined
with images and videos three times and once with text messages
[209]. Jaimes [89] and Ishimatsu and Ueoka [84, 85] represented
the user’s posture with angled lines over live webcam footage.

We found six publications that combined sketch-like depic-
tions with text messages. One example is the approach by Özgül

and Patlar Akbulut [267], who showed cartoons and explanations of
good and bad postures. Another one by Khurana et al. [101] showed
an anthropomorphized giraffe whose neck angle and facial expres-
sion encode the user’s posture. They, additionally, displayed general
information about sitting posture and suggestions on how the user
can improve theirs. While multiple publications showed sketches of
a person on a chair with some information [151, 157, 224], Murata
and Shibuya [151] added red circles around zones for which a bad
posture was detected and provided additional information on how
to correct them. Nizam et al. [157] showed arrows suggesting pos-
ture changes and a text explanation. The sketched human of Tavares
et al. [224] adopted different postures while a text told the user that
their stance was incorrect or suggested taking a break. Ochoa et al.
[159] used an image of a human spine and added colored text labels
for parts of the spine if the sensor of the corresponding section
detected a bad posture.

Two publications combined physical objects with other feedback
types. Haller et al. [70] created digital and physical flowers that
imitated the user’s posture and were able to shake themselves to
motivate the user to do a training session. Hong et al. [74] combined
an anthropomorphized flower with gamification in the form of
points that can be used to customize the flower, badges that can be
earned, and levels. Some of these features can be seen in Figure 5e.
The system lets the user take care of the flower through proper
sitting. Suggestive missions unrelated to sitting, such as cleaning
the room or drinking water, were integrated. Finally, users can put
fully grown flowers into a garden where they show statistics, and
the user can start a new flower.

Finally, two publications combined more than two visual feed-
back types we defined. Shen et al. [196] created a heatmap of the
pressure distribution, a bar chart of the sensors’ pressure values,
a sketch of a human representing the user’s current posture, and
a text message that encourages the user to do exercises or relax.
Further, Speir [209] drew colored circles at the sensor positions
on an image of their chair, using red for sensors that showed a
deviation from the reference posture. An additional text suggested
that the user should change their posture.
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(a) Shen et al. [196], ©Springer Nature 2021 (b) Shin et al. [200], ©ACM 2019 (c) Fujita et al. [63], ©ACM 2021

Figure 7: Examples of actively correcting the user’s sitting posture: inflatable bladders on a chair (a), a self-adjusting computer

display that can be tilted (b), and the combination of a self-adjusting chair that can be inclined and a sit-stand desk (c).

4.2 Active Correction

Out of the 104 publications featuring feedback, we found 14 that
present feedback that actively corrects the user’s posture. One
example is the publication by Kiran et al. [105], who used Electrical
muscle stimulation (EMS) to cause involuntary muscle contraction.
Another approach by Ishimatsu and Ueoka [85] consists of a system
that gives physical feedback by pushing wooden beads attached
to sticks up the user’s back. A further technique for active sitting
posture correction is using bladders that can be inflated or deflated
to improve the user’s posture [117, 137, 154, 167, 196, 231], for
example, Figure 7a.

Other researchers built systems that adjust the user’s worksta-
tion to influence their posture directly or indirectly. One way is to
move the computer monitor [197, 200] or the content in a Virtual
Reality (VR) environment [199] to get the user to adjust their pos-
ture, for example, Figure 7b. Fujita et al. [63] built a chair that can
change the angle of its seat, as shown in Figure 7c. Bailly et al. [13]
developed an active workstation to move and rotate the keyboard,
mouse, and monitor with actuators to avoid bad sitting postures.
Wu et al. [253] used a Microsoft Kinect to measure the user’s dimen-
sions and calculate the optimal chair and desk height and positions
for the keyboard, chair, and monitor. Using additional hardware
that can actively change how someone is sitting is the most elab-
orate way to give feedback about sitting posture. We assume that
such methods have disadvantages due to cost and size compared to
other methods, while we also see a great advantage because they
can improve the user’s posture without their attention. This passive
functionality might be crucial, for example, if the user has limited
mobility or needs to focus on their current task, such as driving a
vehicle.

4.3 Aural and Vibrotactile Feedback

Other non-visual feedback modalities are sound (aural) and vibra-
tion (vibrotactile), for which we found 32 and 33 papers, respec-
tively. Most aural feedback was provided through simple sounds
(e.g., [227, 249]), while others gave verbal instructions or warnings
in person [45, 52, 64] or via recordings [40, 105, 149, 159]. Vibro-
tactile feedback was given through a single actuator (e.g., [17, 94])
or with multiple actuators to be able to focus the area where a
deviation from a good posture was detected (e.g., [81, 82, 262, 263]).

These types of feedback have the potential drawback of being heard
by others. This is possible if audio is played through speakers or if
the actuators of vibrotactile feedback are mounted in a way that
amplifies the vibrating sounds, like on the wooden board of a chair.
These sounds might disturb others, such as coworkers or family
members, or make the user uncomfortable if others know about
their need for feedback about sitting.

4.4 Evaluation of Sitting Posture Feedback

Through User Studies

This section gives an overview of the publications evaluating sitting
posture feedback. Of the 104 publications featuring feedback, 57
evaluated their approaches through 64 user studies. In the follow-
ing, we provide some insights into their design, especially regard-
ing their overall setup and the modalities studied. We first take
a detailed look at the type of study, the duration, the number of
participants, and the investigated measures. Then, we briefly sum-
marize the studies’ setups and results. A complete table with details
of the studies can be found in the supplementary material.

4.4.1 Study types and tasks. We followed the classification of study
types by Voit et al. [235] and identified 37 lab studies, 25 in-situ
studies, one online, and one VR study. Study tasks were mainly
related to regular PC tasks (51/64), such as specified tasks in typing
(16/51), reading (6/51), and watching movies/playing games (2/51).
In 31 cases, participants could do their own PC tasks. There were
also sedentary tasks within special contexts (8/64), e.g., within
schools [52], teens’ daily life [124], or healthcare workers’ tasks
(5/8). Other tasks (6/64) focused mainly on testing or using the
feedback.

4.4.2 Study duration and number of participants. Figure 8 shows
the distribution of the studies’ number of participants and their
duration. Most studies comprised only one short session (40/64),
and only 11 of the 24 studies that ran over multiple days had 12 or
more participants. The average number of participants is 15, thus
above the CHI average of 12 found by Caine [33]. For four studies,
there is no information about the duration of the study, while for
one, the number of participants was not stated clearly. These are
not included in the charts. The time we report describes the time
frame of a study, not only the intervention periods. Further, the
maximum duration was taken in cases where the duration varied
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Figure 8: The distribution of the number of participants and the duration of the user studies evaluating sitting posture feedback

in the literature. Please note that only 60 of 64 user studies are included, as four are missing one of the two displayed values.

between participants. For example, the study by Dib and Sturmey
[45] consisted of weekly 30-minute sessions over three to four
months. This is depicted as a 4-month study in Figure 8, or in other
words, as 4 ∗ 30 ∗ 24 = 2880 hours (����ℎ� ∗ ���� ∗ ℎ����).

4.4.3 Measurements. We identified posture behavior, usability/ User
Experience (UX), comfort, task performance, and open feedback as
categories for recorded evaluation data. Posture behavior (recorded
by 54/64 studies) was analyzed through measurements of the pos-
ture, as well as subjective judgments of the participants. Usability/
UX (25/64) entailed questionnaires regarding the latter. Comfort
(10/64) refers to measures regarding participants’ sitting comfort or
pain. Task performance (8/64) records the speed or accuracy of a pri-
mary task while sitting, self-monitoring, or correcting one’s posture.
Open feedback (10/64) comprised qualitative free-form answers in
questionnaires or interviews. There are studies solely investigating
posture guidance (27/64), usability (4/64), open feedback (2/64), or
task performance (1/64). The others used a combination of those
measures. Most studies report positive effects of feedback on these
measures. We summarize the tendencies of these results in the fol-
lowing section. We are, however, not looking at the results in detail
as the studies are very heterogeneous and lack standard definitions
for (good) postures and methods to measure health improvements.
We discuss this further in Section 5.2.

4.4.4 Feedback Details and Results.

Active. Active feedback was evaluated through 10 user stud-
ies. Four investigated approaches that move a (virtual) monitor to
influence sitting posture [197, 199, 200], and two created an auto-
matically adjusting workspace [13, 253]. Three studied an inclining
chair [63], and one an inflatable chair to increase comfort [154].
Only two studies report mixed results regarding UX [63], while the
rest present positive results for improving sitting posture and other
measures.

Aural. Our review revealed four studies investigating aural feed-
back [11, 52, 180, 258], all of which used simple sounds to signal
that the user should improve their sitting posture. Ribeiro et al.
[180] and Epstein et al. [52] report mixed results regarding posture,
while the rest found positive influences.

Vibration. Ten studies investigated vibrotactile feedback. Five
studied setups with one source for vibration, while the others used
up to 6 actuators to provide feedback where the users’ posture
needed improvement. One unique case we want to highlight is the
second study by O’Brien and Azrin [158] investigating vibrating
bone conductors. All studies evaluating changes in sitting posture
reported positive results. Notably, Zheng and Morrell [264] did not
measure the feedback’s effect on sitting posture but reported a
negative impact on the users’ performance. The informal study by
Johnson et al. [94] found increased posture awareness but mixed
results regarding UX.

Visual. The most studied (15/64) single feedback modality is vi-
sual, with 15 out of the 64 studies. Real-time feedback was studied
in all 15 studies, while two also studied summarized feedback. All
types of visual feedback have been studied: text messages (4/15),
sketch-like depictions (6/15), charts (4/15), images or videos (4/15),
physical objects (3/15), and others (2/15). The studies investigating
other types are by Murata and Shibuya [151], who investigated
sitting scores comparing users, and Duffy and Smeaton [47], who
dimmed the monitor’s brightness. Five studies found mixed re-
sults [44, 201, 209, 241, 245], while the others reported a positive
influence on posture, preference, comfort, and awareness.

Multiple Modalities. Most of the studies (25/64) incorporated
more than one modality. Visual feedback is featured in most of
these studies (22/25), followed by vibrotactile (16/25), aural (14/25),
and active (4/25). In 13 cases, modalities were combined, while the
other 12 studies conducted a comparative analysis. Of the studies
that combined methods, two report mixed results [186, 202], while
the rest describe a positive influence of their feedback on posture,
preference, and UX. The comparative studies provide various inter-
esting results. Four studies could not reveal significant differences
between the compared methods [27, 263]. Three showed the advan-
tage of combining multiple modalities over single ones [64, 67, 198].
Two studies revealed an advantage of active over visual [85, 105]
and aural [105] feedback. The other studies found vibrotactile feed-
back to be more appropriate than aural [116], visual being preferred
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over aural [4], vibrotactile resulting in higher awareness while be-
ing more disruptive than visual, and a physical flower being less
disruptive that a digital one [70].

5 DISCUSSION

Based on our review, we discuss our findings regarding sitting
posture feedback and recognition in the following sections. We
comment on the literature and suggest aspects to consider when
building sitting posture systems. We further suggest and speculate
about future research directions and reflect upon the limitations of
our work. Our findings provide an overview of the topic and some
guidance for future research.

5.1 Sitting Posture Recognition

Although many different approaches have been explored, most sit-
ting posture recognition solutions in the literature use one type of
sensor. The most prominent are Thin and Flexible Pressure Sen-
sors (TFPS). They are usually built into a chair where the users
do not see or notice them. They seem natural to measure weight
distribution on a chair, are easy to use, can be made portable, and
offer the broadest literature basis. The long-term popularity of such
systems and high posture recognition accuracy make a strong case
for their simplicity. Combinations of sensors, however, can offer
more detailed posture data and additional measures. For example,
wearable motion sensors or distance sensors at the backrest of a
chair can complement TFPS with data about the user’s back or
other body parts. Some tasks might benefit from other combina-
tions, like temperature and pulse sensors, as suggested by Kumar
and Sridhar [109]. Vision-based setups can demonstrate their ac-
curacy advantage when they are used to check and calibrate other
systems, as suggested by Kappattanavar et al. [97]. The choice of
hardware also depends on the user. For example, sensors that must
be worn can be uncomfortable for some people. On the other hand,
a mobile setup might be necessary for people who regularly sit in
different or public places. The user’s context can also be relevant,
such as a work environment that does not allow cameras due to
privacy issues. In general, we see the various approaches to mea-
suring someone’s sitting posture as a great strength of the field.
One can choose the most fitting approach based on available space,
cost, privacy, portability, and desired accuracy. Thus, we suggest

carefully considering the task and users before selecting sit-

ting posture recognition technologies. Further, we suggest

starting with a simple solution and only adding complexity

as necessary.

We further propose the field aims to integrate sitting posture
recognition into existing devices like smartphones and wearable
devices. This would greatly increase the spread and ease of use of
the technology. Current wearable smart devices like watches and
wristbands are already optimized for comfort, can detect movement,
and suggest breaking up inactivity. To our knowledge, they cannot
yet differentiate sitting postures. However, recent work by Mollyn
et al. [147] shows the possibility of combining devices like smart-
phones, smartwatches, and earbuds to determine full-body posture.
Future work should advance this technology and investigate its fea-
sibility for accurate sitting posture recognition.We recommend

integrating posture recognition into existing devices to make

it accessible to as many people as possible. This would also

raise awareness of the influence of sitting posture on health

and knowledge of better sitting habits.

5.2 Sitting Posture Feedback

The most used feedback for sitting posture in the literature is visual
(69/104), followed by vibrotactile (33/104), aural (32/104), and active
(14/104). The strength of visual feedback lies in its versatility and the
granularity of conveyable information. It includes blinking LEDs,
physical objects that mirror the user’s posture, and screen-based
feedback. Visualizations on a screen can range from simple forms
to temporal data on changes in posture over time. Additionally,
numerous hardware options are available for conveying this infor-
mation, including standard monitors, mobile devices, and simpler
solutions such as an Arduino. Thus, we recommend visual feed-

back, especially for prototyping, as it is a straightforward

solution with many possibilities.

Visual feedback does, however, not outperform the other modali-
ties. Additionally, depending on the user’s capabilities, some modal-
ities might not work at all. For example, visual or hearing impair-
ments rule out the corresponding feedback. Active feedback, such
as self-adjusting computer displays, is likely more expensive, but
people with decreased mobility could greatly benefit from active
systems such as self-inflating bladders. Active feedback addition-
ally has a higher customization demand, which means that it will
need to be more adaptable to each individual than, for example,
visual feedback. For example, when adjusting the monitor height,
the user’s anatomy needs to be taken into account, which will, of
course, vary depending on each individual. Aural feedback can be
given with limited or no desk and screen space. Further, aural feed-
back highly depends on whether the environment allows for the
use of speakers or headphones. Using speakers can disturb other
people, while users with aural tasks might not be able to use aural
feedback at all. These examples show the importance of knowing
the users and their tasks when designing sitting posture feedback.
We suggest building modular and fully customizable feed-

back systems that can adapt to users’ preferences and needs

to provide a satisfying and motivating experience for the

broadest range of individuals.

We found several ways to recognize posture and offer feedback
in the literature. A positive impact on various measures has been
found. Many studies indicate a positive influence of sitting posture
feedback on measures such as posture, awareness, and comfort
[44, 151]. However, all 64 surveyed studies investigated the short-
term effects of single solutions. Most frequently measured is some
form of posture behavior, like compliance with a particular posture
to the time spent in different postures. Although similar, these
results are not necessarily comparable between the studies. Detailed
insights about the interaction between the individual elements of
feedback approaches and the vast aspects of users’ health still need
to be clarified. Due to the lack of comparability, it is not easy to
draw general conclusions on the effectiveness of different feedback
modalities. Thus, better comparability of postures and their

effects on health is needed to further our knowledge about

the long-term effects.
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Further, it is interesting to note that none of the studies we
found considered the usability and UX aspect, which means there
is an opportunity to delve deeper and gain valuable insights. Tasks
outside of office work are rarely studied, but we see the potential for
future work in sitting posture guidance systems beyond office work.
Private use, schools, and demanding occupations like healthcare or
truck driving could greatly benefit from sitting posture feedback.
From the technological side, we see potential for using mixed reality
and wearable devices. To summarize, we suggest future work to

explore sitting posture feedback in the context of usability,

settings other than offices, and an even broader range of

output technologies.

To advance the field toward comparability and gain more general
insights, we recommend addressing a series of open questions:

• Which postures are considered good or bad?
• How many postures must be distinguished to define healthy
and unhealthy sitting behavior?

• As recent research suggests, is changing postures frequently
and taking breaks enough to sit healthy?

• What impact does the duration of sitting have on the health-
iness of a posture?

• How can we measure the influence of different sitting be-
haviors on health?

• Can we measure and isolate the effects of interventions and
compare them?

• Which recognition technologies can identify all the required
postures, and are they consistent with each other?

Once we have established these aspects, we can study the long-term
effects of feedback on sitting posture and overall health:

• How long do the potential positive effects last? Do we need
to use these systems periodically, only once for a certain
amount of time, or constantly? In other words, do we need
a permanent augmentation or only temporary guidance to
improve our sitting?

We see the need for cross- and inter-disciplinary research

between theHCI and themedical community to answer these

questions and advance the positive influence that sitting

posture recognition and feedback can provide.

5.3 Limitations

Using a systematic approach to conducting a literature review, like
PRISMA4 or QUOROM [146], has advantages but also limitations.
The PRISMA guidelines were developed for the medical field and
are, as argued by Rogers and Seaborn [183], “not actually appropri-
ate for [HCI].” We also followed their recommendation to search
multiple databases at various times. We looked through all the cita-
tions and references of the publications we identified as relevant to
sitting posture recognition or feedback. However, the main draw-
back of our approach is that we did not document all exclusions
properly, which is a disadvantage compared to PRISMA. In conclu-
sion, we support and encourage the discussion about systematic
reviews in HCI [183, 212] and hope for clear and useful guidelines
for our community. While our citation and reference search method

4https://prisma-statement.org//

offers significant benefits, we urge anyone not following PRISMA
to document all excluded papers meticulously.

6 CONCLUSION

Our work presents a literature review (N=223) on sitting posture
recognition and feedback. We contribute an extensive overview and
categorization of various types of hardware for recognition, feed-
back modalities, and visual feedback types. Further, an overview of
user studies evaluating visual feedback is provided. We also offer
detailed tables for all of these aspects. Our findings include the
prevalence of pressure sensors and visual feedback. However, we
found advantages and disadvantages inherent to all techniques
and no one-size-fits-all solution. Less-used technologies are not
necessarily less effective; it depends on the use case. The same
also applies to feedback. We suggest offering various methods and
customizability for the users, as their needs are crucial. Existing
user studies indicate positive results but focus on single solutions
and short-term effects. We provide open questions to advance our
knowledge about recognizing sitting posture and giving feedback
that can improve users’ health in the long term. There is great po-
tential in recognizing sitting posture and giving feedback to lessen
the adverse health effects of the increasing time we spend sitting,
whether voluntary, presupposed by certain occupations, or neces-
sary due to limited mobility. Current statistics and trends about
sitting time show that this topic will gain even more significance.
We hope our contribution will stimulate and drive further research
in this area.

ACKNOWLEDGMENTS

Katrin Angerbauer and SvenMayer were supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation), Pro-
ject-ID 251654672-TRR 161. The work was also supported by the
DFG under Germany’s Excellence Strategy - EXC 2075 – 390740016
and the Stuttgart Center for Simulation Science (SimTech). We also
thank the International Max Planck School for Intelligent Systems
(IMPRS-IS) for supporting us.

REFERENCES

[1] Jawad Ahmad, Henrik Andersson, and Johan Siden. 2017. Sitting posture recog-
nition using screen printed large area pressure sensors. In Proc. SENSORS. IEEE,
New York, NY, USA, 1–3. https://doi.org/10.1109/icsens.2017.8233944

[2] Jawad Ahmad, Johan Sidén, and Henrik Andersson. 2021. A Proposal of
Implementation of Sitting Posture Monitoring System for Wheelchair Uti-
lizing Machine Learning Methods. Sensors 21, 19 (Sept. 2021), 6349. https:
//doi.org/10.3390/s21196349

[3] ShiHyun Ahn, YoungJin Jeong, DongHyun Kim, and HyunDeok Kim. 2015.
Development of the non-wearable system with FSR sensors for correction
of sitting position. In Proc. Int. Conf. Computing Technology and Information
Management (ICCTIM). IEEE, New York, NY, USA, 140–143. https://doi.org/10.
1109/icctim.2015.7224608

[4] Reem Alattas and Khaled Elleithy. 2014. Detecting and Minimizing Bad Posture
Using Postuino among Engineering Students. In Proc. Artificial Intelligence,
Modelling and Simulation (AIMS). IEEE, New York, NY, USA, 344–349. https:
//doi.org/10.1109/aims.2014.55

[5] Ali Albarrati, Hamayun Zafar, Ahmad H. Alghadir, and Shahnwaz Anwer. 2018.
Effect of Upright and Slouched Sitting Postures on the Respiratory Muscle
Strength in Healthy Young Males. BioMed Research International 2018 (25 Feb.
2018), 1–5. https://doi.org/10.1155/2018/3058970

[6] Arif Reza Anwary, Hamid Bouchachia, and Michael Vassallo. 2019. Real time
visualization of asymmetrical sitting posture. Procedia Computer Science 155
(2019), 153–160. https://doi.org/10.1016/j.procs.2019.08.024

[7] Arif Reza Anwary, Michael Vassallo, and Hamid Bouchachia. 2020. Monitoring
of Prolonged and Asymmetrical Posture to Improve Sitting Behavior. In Proc.

https://prisma-statement.org//
https://doi.org/10.1109/icsens.2017.8233944
https://doi.org/10.3390/s21196349
https://doi.org/10.3390/s21196349
https://doi.org/10.1109/icctim.2015.7224608
https://doi.org/10.1109/icctim.2015.7224608
https://doi.org/10.1109/aims.2014.55
https://doi.org/10.1109/aims.2014.55
https://doi.org/10.1155/2018/3058970
https://doi.org/10.1016/j.procs.2019.08.024


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Krauter et al.

Data Analytics for Business and Industry: Way Towards a Sustainable Economy
(ICDABI). IEEE, New York, NY, USA, 1–5. https://doi.org/10.1109/icdabi51230.
2020.9325598

[8] Marilda Ardito, Fabiana Mascolo, Martina Valentini, and Francesco Dell’Olio.
2021. Low-Cost Wireless Wearable System for Posture Monitoring. Electronics
10, 21 (Oct. 2021), 2569. https://doi.org/10.3390/electronics10212569

[9] Anass Arrogi, Filip Boen, and Jan Seghers. 2019. Validation of a smart chair and
corresponding smartphone app as an objective measure of desk-based sitting.
Journal of Occupational Health 61, 1 (2019), 121–127. https://doi.org/10.1002/
1348-9585.12033

[10] Jehangir Arshad, Hafiza Mahnoor Asim, Muhammad Adil Ashraf, Mujtaba Hus-
sain Jaffery, Khurram Shabih Zaidi, and Melkamu Deressa Amentie. 2022. An
Intelligent Cost-Efficient System to Prevent the Improper Posture Hazards in
Offices Using Machine Learning Algorithms. Computational Intelligence and
Neuroscience 2022 (18 Aug. 2022), 1–9. https://doi.org/10.1155/2022/7957148

[11] N. Azrin, H. Rubin, F. O'Brien, T. Ayllon, and D. Roll. 1968. Behavioral engi-
neering: postural control by a portable operant apparatus1. Journal of Applied
Behavior Analysis 1, 2 (1968), 99–108. https://doi.org/10.1901/jaba.1968.1-99

[12] Naveen L. Bagalkot, Gaurav Singh, Vineeta Rath, Tomas Sokoler, and Anchit
Shukla. 2019. ReRide: A Bike Area Network for Embodied Self-monitoring dur-
ing Motorbike Commute. In Proc. Tangible, Embedded, and Embodied Interaction
(TEI). ACM, New York, NY, USA, 443–450. https://doi.org/10.1145/3294109.
3300986

[13] Gilles Bailly, Sidharth Sahdev, Sylvain Malacria, and Thomas Pietrzak. 2016.
LivingDesktop: Augmenting Desktop Workstation with Actuated Devices. In
Proc. Human Factors in Computing Systems (CHI). ACM, San Jose California USA,
5298–5310. https://doi.org/10.1145/2858036.2858208

[14] Junrong Bao, Wenfeng Li, Jian Li, Yanhong Ge, and Chongzhi Bao. 2013. Sitting
Posture Recognition based on data fusion on pressure cushion. Indonesian
Journal of Electrical Engineering and Computer Science 11, 4 (April 2013), 1769–
1775. https://ijeecs.iaescore.com/index.php/IJEECS/article/view/2151

[15] Renato Baptista, Michel Antunes, Abd El Rahman Shabayek, Djamila Aouada,
and Bjorn Ottersten. 2017. Flexible feedback system for posture monitoring and
correction. In Proc. Int. Conf. Image Information Processing (ICIIP). IEEE, New
York, NY, USA, 1–6. https://doi.org/10.1109/iciip.2017.8313687

[16] Ricardo Barba, Ángel P. de Madrid, and Jesús G. Boticario. 2015. Development of
an Inexpensive Sensor Network for Recognition of Sitting Posture. International
Journal of Distributed Sensor Networks 11, 8, Article 161 (Aug. 2015), 1 pages.
https://doi.org/10.1155/2015/969237

[17] Vincent J. Barone, Michelle C. Yuen, Rebecca Kramer-Boniglio, and Kathleen H.
Sienko. 2019. Sensory garments with vibrotactile feedback for monitoring and
informing seated posture. In Proc. Soft Robotics (RoboSoft). IEEE, New York, NY,
USA, 391–397. https://doi.org/10.1109/robosoft.2019.8722795

[18] Elke Beck, Kai Von Holdt, Jochen Meyer, and Susanne Boll. 2019. Sneaking
Physical Exercise into Sedentary Work Life: Design Explorations of Ambient
Reminders in Opportune Moments. In Proc. Healthcare Informatics (ICHI). IEEE,
New York, NY, USA, 1–7. https://doi.org/10.1109/ICHI.2019.8904662

[19] Sun Bei, Zeng Xing, Liu Taocheng, and Lu Qin. 2017. Sitting posture detection
using adaptively fused 3D features. In Proc. Information Technology, Networking,
Electronic and Automation Control (ITNEC). IEEE, NewYork, NY, USA, 1073–1077.
https://doi.org/10.1109/itnec.2017.8284904

[20] Marco Benocci, Elisabetta Farella, and Luca Benini. 2011. A context-aware smart
seat. In Proc. Int. Workshop Advances in Sensors and Interfaces (IWASI). IEEE,
New York, NY, USA, 104–109. https://doi.org/10.1109/iwasi.2011.6004697

[21] Daniele Bibbo, Federica Battisti, Silvia Conforto, and Marco Carli. 2018. A non-
intrusive system for seated posture identification. In Proc. e-Health Networking,
Applications and Services (Healthcom). IEEE, New York, NY, USA, 1–5. https:
//doi.org/10.1109/healthcom.2018.8531165

[22] Daniele Bibbo, Marco Carli, Silvia Conforto, and Federica Battisti. 2019. A
Sitting Posture Monitoring Instrument to Assess Different Levels of Cognitive
Engagement. Sensors 19, 3 (Jan. 2019), 455. https://doi.org/10.3390/s19030455

[23] Daniele Bibbo, Silvia Conforto, Maurizio Schmid, and Federica Battisti. 2020.
The Influence of Different Levels of Cognitive Engagement on the Seated
Postural Sway. Electronics 9, 4 (March 2020), 601. https://doi.org/10.3390/
electronics9040601

[24] Stuart J.H. Biddle, Jason A. Bennie, Katrien De Cocker, David Dunstan, Paul A.
Gardiner, Genevieve N. Healy, Brigid Lynch, Neville Owen, et al. 2019. Contro-
versies in the Science of Sedentary Behaviour and Health: Insights, Perspectives
and Future Directions from the 2018 Queensland Sedentary Behaviour Think
Tank. International Journal of Environmental Research and Public Health 16, 23
(Nov. 2019), 4762. https://doi.org/10.3390/ijerph16234762

[25] Nancy L. Black, Mathieu Tremblay, and Fandresena Ranaivosoa. 2022. Different
sit:stand time ratios within a 30-minute cycle change perceptions related to
musculoskeletal disorders. Applied Ergonomics 99 (Feb. 2022), 103605. https:
//doi.org/10.1016/j.apergo.2021.103605

[26] Ivo Blohm and Jan Marco Leimeister. 2013. Gamification. Business & Information
Systems Engineering 5, 4 (June 2013), 275–278. https://doi.org/10.1007/s12599-

013-0273-5
[27] Rik Bootsman, Panos Markopoulos, Qi Qi, Qi Wang, and Annick AA Tim-

mermans. 2019. Wearable technology for posture monitoring at the work-
place. International Journal of Human-Computer Studies 132 (Dec. 2019), 99–111.
https://doi.org/10.1016/j.ijhcs.2019.08.003

[28] Katia Bourahmoune and Toshiyuki Amagasa. 2019. AI-powered Posture Train-
ing: Application of Machine Learning in Sitting Posture Recognition Using the
LifeChair Smart Cushion. In Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI).
IJCAI, California, USA, 5808–5814. https://doi.org/10.24963/ijcai.2019/805

[29] Katia Bourahmoune, Karlos Ishac, and Toshiyuki Amagasa. 2022. Intelligent
Posture Training: Machine-Learning-Powered Human Sitting Posture Recogni-
tion Based on a Pressure-Sensing IoT Cushion. Sensors 22, 14 (July 2022), 5337.
https://doi.org/10.3390/s22145337

[30] Andreas Braun, Sebastian Frank, and Reiner Wichert. 2015. The Capacitive
Chair. In Proc. Int. Conf. Distributed, Ambient, and Pervasive Interactions (DAPI).
Springer Nature, Cham, 397–407. https://doi.org/10.1007/978-3-319-20804-6_36

[31] Paul P. Breen, Aamer Nisar, and Gearoid OLaighin. 2009. Evaluation of a single
accelerometer based biofeedback system for real-time correction of neck posture
in computer users. In Proc. Engineering in Medicine and Biology Society (EMBC).
IEEE, New York, NY, USA, 7269–7272. https://doi.org/10.1109/iembs.2009.
5334726

[32] Wenyu Cai, Dongyang Zhao, Meiyan Zhang, Yinan Xu, and Zhu Li. 2021. Im-
proved Self-Organizing Map-Based Unsupervised Learning Algorithm for Sit-
ting Posture Recognition System. Sensors 21, 18 (Sept. 2021), 6246. https:
//doi.org/10.3390/s21186246

[33] Kelly Caine. 2016. Local Standards for Sample Size at CHI. In Proc. Human
Factors in Computing Systems (CHI). ACM, New York, NY, USA, 981–992. https:
//doi.org/10.1145/2858036.2858498

[34] Kehan Chen. 2019. Sitting Posture Recognition Based on OpenPose. IOP
Conference Series: Materials Science and Engineering 677, 3 (Dec. 2019), 032057.
https://doi.org/10.1088/1757-899x/677/3/032057

[35] Jingyuan Cheng, Bo Zhou, M. Sundholm, and Paul Lukowicz. 2013. Smart
Chair: What Can Simple Pressure Sensors under the Chairs’ Legs Tell Us about
User Activity?. In Proc. Mobile Ubiquitous Computing, Systems, Services and
Technologies (2013-01) (UBICOMM). IARIA, Wilmington, DE 19810, 81–84.

[36] L.C.K. Chin, Kok Seng Eu, Tee Tiong Tay, Choe Yung Teoh, and Kian Meng
Yap. 2019. A Posture Recognition Model Dedicated for Differentiating between
Proper and Improper Sitting Posture with Kinect Sensor. In Proc. Symp. Haptic,
Audio and Visual Environments and Games (HAVE). IEEE, New York, NY, USA,
1–5. https://doi.org/10.1109/have.2019.8920964

[37] Haeyoon Cho, Hee-Joe Choi, Chae-Eun Lee, and Choo-Won Sir. 2019. Sitting
Posture Prediction and Correction System using Arduino-Based Chair and Deep
Learning Model. In Proc. Service-Oriented Computing and Applications (SOCA).
IEEE, New York, NY, USA, 98–102. https://doi.org/10.1109/soca.2019.00022

[38] Hyeob Choi and Sukyung Park. 2015. Estimation of sitting posture by using
the combination of ground reaction force. Journal of Mechanical Science and
Technology 29, 4 (01 April 2015), 1657–1662. https://doi.org/10.1007/s12206-
015-0337-1

[39] Wenzhe Cun, Rong Mo, Jianjie Chu, Suihuai Yu, Huizhong Zhang, Hao Fan,
Yanhao Chen, Mengcheng Wang, et al. 2021. Sitting posture detection and
recognition of aircraft passengers using machine learning. Artificial Intelligence
for Engineering Design, Analysis and Manufacturing 35, 3 (Aug. 2021), 284–294.
https://doi.org/10.1017/s0890060421000135

[40] I. Daian, A. M. van Ruiten, A. Visser, and S. Zubic. 2007. Sensitive chair. In Proc.
European Conf. Cognitive ergonomics: invent! explore! (ECCE). ACM, New York,
NY, USA, 163–166. https://doi.org/10.1145/1362550.1362583

[41] Ida Damen, Lidewij Heerkens, Annabel van den Broek, Kimberly Drabbels, Olga
Cherepennikova, Hans Brombacher, and Carine Lallemand. 2020. PositionPeak:
Stimulating Position Changes During Meetings. In Extended Abstracts Human
Factors in Computing Systems (CHI EA). ACM, New York, NY, USA, 1–8. https:
//doi.org/10.1145/3334480.3383054

[42] Hadi Daneshmandi, Alireza Choobineh, Haleh Ghaem, and Mehran Karimi.
2017. Adverse Effects of Prolonged Sitting Behavior on the General Health of
Office Workers. Journal of Lifestyle Medicine 7, 2 (July 2017), 69–75. https:
//doi.org/10.15280/jlm.2017.7.2.69

[43] Kermit G. Davis and Susan E. Kotowski. 2014. Postural Variability: An Effective
Way to Reduce Musculoskeletal Discomfort in Office Work. Human Factors:
The Journal of the Human Factors and Ergonomics Society 56, 7 (Nov. 2014),
1249–1261. https://doi.org/10.1177/0018720814528003

[44] Carrie Demmans, Sriram Subramanian, and Jon Titus. 2007. Posture mon-
itoring and improvement for laptop use. In Extended Abstracts Human Fac-
tors in Computing Systems (CHI EA). ACM, New York, NY, USA, 2357–2362.
https://doi.org/10.1145/1240866.1241007

[45] Nancy Ellen Dib and Peter Sturmey. 2007. The Effects of Verbal Instruction,
Modeling, Rehearsal, and Feedback on Correct Posture During Flute Play-
ing. Behavior Modification 31, 4 (July 2007), 382–388. https://doi.org/10.1177/
0145445506296798

https://doi.org/10.1109/icdabi51230.2020.9325598
https://doi.org/10.1109/icdabi51230.2020.9325598
https://doi.org/10.3390/electronics10212569
https://doi.org/10.1002/1348-9585.12033
https://doi.org/10.1002/1348-9585.12033
https://doi.org/10.1155/2022/7957148
https://doi.org/10.1901/jaba.1968.1-99
https://doi.org/10.1145/3294109.3300986
https://doi.org/10.1145/3294109.3300986
https://doi.org/10.1145/2858036.2858208
https://ijeecs.iaescore.com/index.php/IJEECS/article/view/2151
https://doi.org/10.1109/iciip.2017.8313687
https://doi.org/10.1155/2015/969237
https://doi.org/10.1109/robosoft.2019.8722795
https://doi.org/10.1109/ICHI.2019.8904662
https://doi.org/10.1109/itnec.2017.8284904
https://doi.org/10.1109/iwasi.2011.6004697
https://doi.org/10.1109/healthcom.2018.8531165
https://doi.org/10.1109/healthcom.2018.8531165
https://doi.org/10.3390/s19030455
https://doi.org/10.3390/electronics9040601
https://doi.org/10.3390/electronics9040601
https://doi.org/10.3390/ijerph16234762
https://doi.org/10.1016/j.apergo.2021.103605
https://doi.org/10.1016/j.apergo.2021.103605
https://doi.org/10.1007/s12599-013-0273-5
https://doi.org/10.1007/s12599-013-0273-5
https://doi.org/10.1016/j.ijhcs.2019.08.003
https://doi.org/10.24963/ijcai.2019/805
https://doi.org/10.3390/s22145337
https://doi.org/10.1007/978-3-319-20804-6_36
https://doi.org/10.1109/iembs.2009.5334726
https://doi.org/10.1109/iembs.2009.5334726
https://doi.org/10.3390/s21186246
https://doi.org/10.3390/s21186246
https://doi.org/10.1145/2858036.2858498
https://doi.org/10.1145/2858036.2858498
https://doi.org/10.1088/1757-899x/677/3/032057
https://doi.org/10.1109/have.2019.8920964
https://doi.org/10.1109/soca.2019.00022
https://doi.org/10.1007/s12206-015-0337-1
https://doi.org/10.1007/s12206-015-0337-1
https://doi.org/10.1017/s0890060421000135
https://doi.org/10.1145/1362550.1362583
https://doi.org/10.1145/3334480.3383054
https://doi.org/10.1145/3334480.3383054
https://doi.org/10.15280/jlm.2017.7.2.69
https://doi.org/10.15280/jlm.2017.7.2.69
https://doi.org/10.1177/0018720814528003
https://doi.org/10.1145/1240866.1241007
https://doi.org/10.1177/0145445506296798
https://doi.org/10.1177/0145445506296798


Sitting Posture Recognition and Feedback CHI ’24, May 11–16, 2024, Honolulu, HI, USA

[46] Zewei Ding, Wanqing Li, Philip Ogunbona, and Ling Qin. 2019. A real-time
webcam-based method for assessing upper-body postures. Machine Vision and
Applications 30, 5 (01 June 2019), 833–850. https://doi.org/10.1007/s00138-019-
01033-9

[47] Paul Duffy and Alan F. Smeaton. 2013. Measuring the Effectiveness of User
Interventions in Improving the Seated Posture of Computer Users. In Proc. Int.
Joint Conf. Ambient Intelligence (Aml). Springer Nature, Cham, 3–12. https:
//doi.org/10.1007/978-3-319-04406-4_2

[48] Lucy E. Dunne, Pauline Walsh, Sonja Hermann, Barry Smyth, and Brian
Caulfield. 2008. Wearable Monitoring of Seated Spinal Posture. IEEE Trans-
actions on Biomedical Circuits and Systems 2, 2 (June 2008), 97–105. https:
//doi.org/10.1109/tbcas.2008.927246

[49] Lucy E. Dunne, Pauline Walsh, Barry Smyth, and Brian Caulfield. 2006. Design
and Evaluation of a Wearable Optical Sensor for Monitoring Seated Spinal
Posture. In Proc. Int. Symp. Wearable Computers (ISWC). IEEE, New York, NY,
USA, 65–68. https://doi.org/10.1109/iswc.2006.286345

[50] Ulf Ekelund, Jakob Tarp, Jostein Steene-Johannessen, Bjørge H Hansen, Barbara
Jefferis, Morten W Fagerland, Peter Whincup, Keith M Diaz, et al. 2019. Dose-
response associations between accelerometry measured physical activity and
sedentary time and all cause mortality: systematic review and harmonised
meta-analysis. BMJ 366 (Aug. 2019), l4570. https://doi.org/10.1136/bmj.l4570

[51] Bilal El-Sayed, Noura Farra, Nadine Moacdieh, Hazem Hajj, Rachid Haidar, and
Ziad Hajj. 2011. A novel mobile wireless sensing system for realtime monitoring
of posture and spine stress. In Proc. Middle East Conf. Biomedical Engineering
(MECBME). IEEE, New York, NY, USA, 428–431. https://doi.org/10.1109/mecbme.
2011.5752156

[52] Rhonda Epstein, Sean Colford, Ethan Epstein, Brandon Loye, and Michael Walsh.
2012. The effects of feedback on computer workstation posture habits. Work 41,
1 (2012), 73–79. https://doi.org/10.3233/WOR-2012-1287

[53] Jheanel Estrada and Larry Vea. 2017. Sitting posture recognition for computer
users using smartphones and a web camera. In Proc. Region 10 Conf. (TENCON).
IEEE, New York, NY, USA, 1520–1525. https://doi.org/10.1109/tencon.2017.
8228098

[54] Jheanel E. Estrada and Larry A. Vea. 2016. Real-time human sitting posture
detection using mobile devices. In Proc. Region 10 Symp. (TENSYMP). IEEE, New
York, NY, USA, 140–144. https://doi.org/10.1109/tenconspring.2016.7519393

[55] Zhe Fan, Xing Hu, Wen-Ming Chen, Da-Wei Zhang, and Xin Ma. 2022. A deep
learning based 2-dimensional hip pressure signals analysis method for sitting
posture recognition. Biomedical Signal Processing and Control 73 (March 2022),
103432. https://doi.org/10.1016/j.bspc.2021.103432

[56] Lin Feng, Ziyi Li, and Chen Liu. 2019. Are you sitting right?-Sitting Pos-
ture Recognition Using RF Signals. In Proc. Pacific Rim Conf. Communications,
Computers and Signal Processing (PACRIM). IEEE, New York, NY, USA, 1–6.
https://doi.org/10.1109/pacrim47961.2019.8985070

[57] Lin Feng, Ziyi Li, Chen Liu, Xiaojiang Chen, Xiao Yin, and Dingyi Fang. 2020.
SitR: Sitting Posture Recognition Using RF Signals. IEEE Internet of Things
Journal 7, 12 (Dec. 2020), 11492–11504. https://doi.org/10.1109/jiot.2020.3019280

[58] Maria José Ferreira, Ana Karina Caraban, and Evangelos Karapanos. 2014. Break-
out: Predicting and Breaking Sedentary Behaviour atWork. In Extended Abstracts
Human Factors in Computing Systems (CHI EA). ACM, Toronto Ontario Canada,
2407–2412. https://doi.org/10.1145/2559206.2581330

[59] Marcello Ferro, Giovanni Pioggia, Alessandro Tognetti, Nicola Carbonaro, and
Danilo De Rossi. 2009. A Sensing Seat for Human Authentication. IEEE
Transactions on Information Forensics and Security 4, 3 (Sept. 2009), 451–459.
https://doi.org/10.1109/TIFS.2009.2019156

[60] George Flutur, Bogdan Movileanu, Lengyel Karoly, Ionut Danci, Daniel Coso-
vanu, and Ovidiu Petru Stan. 2019. Smart Chair System for Posture Correction.
In Proc. Euromicro Conf. Digital System Design (DSD). IEEE, New York, NY, USA,
436–441. https://doi.org/10.1109/dsd.2019.00069

[61] Laetitia Fradet, John Tiernan, Margaret Mcgrath, Elaine Murray, Franck Braatz,
and Sebastian I. Wolf. 2011. The use of pressure mapping for seating posture
characterisation in children with cerebral palsy. Disability and Rehabilitation:
Assistive Technology 6, 1 (Jan. 2011), 47–56. https://doi.org/10.3109/17483107.
2010.512969

[62] Emmanouil Fragkiadakis, Kalliopi V. Dalakleidi, and Konstantina S. Nikita. 2019.
Design and Development of a Sitting Posture Recognition System. In Proc.
Engineering in Medicine and Biology Society (EMBC). IEEE, New York, NY, USA,
3364–3367. https://doi.org/10.1109/embc.2019.8856635

[63] Kazuyuki Fujita, Aoi Suzuki, Kazuki Takashima, Kaori Ikematsu, and Yoshifumi
Kitamura. 2021. TiltChair: Manipulative Posture Guidance by Actively Inclining
the Seat of an Office Chair. In Proc. Human Factors in Computing Systems (CHI).
ACM, New York, NY, USA, Article 228, 14 pages. https://doi.org/10.1145/
3411764.3445151

[64] BreccaM. Gaffney, Katrina S.Maluf, and Bradley S. Davidson. 2015. Evaluation of
Novel EMG Biofeedback for Postural Correction During Computer Use. Applied
Psychophysiology and Biofeedback 41, 2 (01 Dec. 2015), 181–189. https://doi.
org/10.1007/s10484-015-9328-3

[65] Tariku Adane Gelaw and Misgina Tsighe Hagos. 2022. Posture Prediction for
Healthy Sitting Using a Smart Chair. In Proc. Int. Conf. Advances of Science and
Technology (ICAST). Springer Nature, Cham, 401–411. https://doi.org/10.1007/
978-3-030-93709-6_26

[66] Blaze Goldstein, Isabella Huang, and Ruzena Bajcsy. 2020. Real-Time Slouch
Detection and Human Posture Prediction from Pressure Mat. In Int. Conf.
Human-Computer Interaction (HCII). Springer Nature, Cham, 174–180. https:
//doi.org/10.1007/978-3-030-50729-9_24

[67] R.H.M. Goossens, M.P. Netten, and B. Van der Doelen. 2012. An office chair to
influence the sitting behavior of office workers. Work 41, Supplement 1 (2012),
2086–2088. https://doi.org/10.3233/wor-2012-0435-2086

[68] Rinki Gupta, Aman Gupta, and Rhea Aswal. 2021. Detection of Poor Posture
using Wearable Sensors and Unsupervised Learning. In Proc. Int. Conf. Advanced
Computing and Communication Systems (ICACCS, Vol. 1). IEEE, New York, NY,
USA, 527–531. https://doi.org/10.1109/icaccs51430.2021.9441893

[69] Rinki Gupta, Devesh Saini, and Shubham Mishra. 2020. Posture detection
using Deep Learning for Time Series Data. In Proc. Int. Conf. Smart Systems
and Inventive Technology (ICSSIT). IEEE, New York, NY, USA, 740–744. https:
//doi.org/10.1109/icssit48917.2020.9214223

[70] Michael Haller, Christoph Richter, Peter Brandl, Sabine Gross, Gerold Schossleit-
ner, Andreas Schrempf, Hideaki Nii, Maki Sugimoto, and Masahiko Inami. 2011.
Finding the Right Way for Interrupting People Improving Their Sitting Posture.
In Proc. IFIP Human-Computer Interaction (INTERACT). Springer Nature, Berlin,
Heidelberg, 1–17. https://doi.org/10.1007/978-3-642-23771-3_1

[71] Chihiro Hayashi, Yu Enokibori, and Kenji Mase. 2017. Harmless line-oriented
sensing point reduction for non-categorical sitting posture score. In Proc. Int.
Joint Conf. Pervasive and Ubiquitous Computing and Proc. International Symp.
on Wearable Computers (UbiComp/ISWC Adjunct). ACM, New York, NY, USA,
61–64. https://doi.org/10.1145/3123024.3123083

[72] Genevieve N. Healy, Elisabeth A. H. Winkler, Elizabeth G. Eakin, Neville Owen,
Anthony D. Lamontagne, Marj Moodie, and David W. Dunstan. 2017. A Cluster
RCT to Reduce Workers’ Sitting Time. Medicine & Science in Sports & Exercise
49, 10 (Oct. 2017), 2032–2039. https://doi.org/10.1249/mss.0000000000001328

[73] Edmond S.L. Ho, Jacky C.P. Chan, Donald C.K. Chan, Hubert P.H. Shum, Yiu
ming Cheung, and Pong C. Yuen. 2016. Improving posture classification ac-
curacy for depth sensor-based human activity monitoring in smart environ-
ments. Computer Vision and Image Understanding 148 (July 2016), 97–110.
https://doi.org/10.1016/j.cviu.2015.12.011

[74] Jeong-Ki Hong, Bon-Chang Koo, So-Ryang Ban, Jun-Dong Cho, and Andrea
Bianchi. 2015. BeuPo. In Proc. Int. Joint Conf. Pervasive and Ubiquitous Computing
and Proc. International Symp. on Wearable Computers (UbiComp/ISWC Adjunct).
ACM, New York, NY, USA, 1015–1020. https://doi.org/10.1145/2800835.2800953

[75] Jeong-ki Hong, Sunghyun Song, Jundong Cho, and Andrea Bianchi. 2015. Better
Posture Awareness through Flower-Shaped Ambient Avatar. In Proc. Tangible,
Embedded, and Embodied Interaction (TEI). ACM, New York, NY, USA, 337–340.
https://doi.org/10.1145/2677199.2680575

[76] Ifung Lu Hong Z. Tan and Alex Pentland. 1997. The chair as a novel haptic user
interface. In Proc. Workshop Perceptual User Interfaces. Banff, Alberta, Canada,
56–57. https://engineering.purdue.edu/~hongtan/pubs/Index.html

[77] Qisong Hu, Xiaochen Tang, and Wei Tang. 2020. A Smart Chair Sitting Posture
Recognition SystemUsing Flex Sensors and FPGA Implemented Artificial Neural
Network. IEEE Sensors Journal 20, 14 (July 2020), 8007–8016. https://doi.org/10.
1109/jsen.2020.2980207

[78] Yu Hu, Adam Stoelting, Yi-Tao Wang, Yi Zou, and Majid Sarrafzadeh. 2010.
Providing a cushion for wireless healthcare application development. IEEE
Potentials 29, 1 (Jan. 2010), 19–23. https://doi.org/10.1109/mpot.2009.934698

[79] Mengjie Huang, Ian Gibson, and Rui Yang. 2017. Smart Chair for Monitoring
of Sitting Behavior. KnE Engineering 2, 2 (Feb. 2017), 274. https://doi.org/10.
18502/keg.v2i2.626

[80] Yong-Ren Huang and Xu-Feng Ouyang. 2012. Sitting posture detection and
recognition using force sensor. In Proc. BioMedical Engineering and Informatics
(BMEI). IEEE, New York, NY, USA, 1117–1121. https://doi.org/10.1109/bmei.
2012.6513203

[81] Karlos Ishac and Kenji Suzuki. 2017. A Smart Cushion System with Vibrotactile
Feedback for Active Posture Correction. In Proc. AsiaHaptics. Springer Nature,
Singapore, 453–459. https://doi.org/10.1007/978-981-10-4157-0_76

[82] Karlos Ishac and Kenji Suzuki. 2018. LifeChair: A Conductive Fabric Sensor-
Based Smart Cushion for Actively Shaping Sitting Posture. Sensors 18, 7 (July
2018), 2261. https://doi.org/10.3390/s18072261

[83] Amayikai A. Ishaku, Aris Tranganidas, Slavomir Matuska, Robert Hudec,
Graeme McCutcheon, Lina Stankovic, and Helena Gleskova. 2019. Flexible
Force Sensors Embedded in Office Chair for Monitoring of Sitting Postures. In
Proc. Flexible and Printable Sensors and Systems (FLEPS). IEEE, New York, NY,
USA, 1–3. https://doi.org/10.1109/fleps.2019.8792250

[84] Haruna Ishimatsu and Ryoko Ueoka. 2014. BITAIKA. In Proc. Augmented Human
(AH). ACM, New York, NY, USA, Article 30, 2 pages. https://doi.org/10.1145/
2582051.2582081

https://doi.org/10.1007/s00138-019-01033-9
https://doi.org/10.1007/s00138-019-01033-9
https://doi.org/10.1007/978-3-319-04406-4_2
https://doi.org/10.1007/978-3-319-04406-4_2
https://doi.org/10.1109/tbcas.2008.927246
https://doi.org/10.1109/tbcas.2008.927246
https://doi.org/10.1109/iswc.2006.286345
https://doi.org/10.1136/bmj.l4570
https://doi.org/10.1109/mecbme.2011.5752156
https://doi.org/10.1109/mecbme.2011.5752156
https://doi.org/10.3233/WOR-2012-1287
https://doi.org/10.1109/tencon.2017.8228098
https://doi.org/10.1109/tencon.2017.8228098
https://doi.org/10.1109/tenconspring.2016.7519393
https://doi.org/10.1016/j.bspc.2021.103432
https://doi.org/10.1109/pacrim47961.2019.8985070
https://doi.org/10.1109/jiot.2020.3019280
https://doi.org/10.1145/2559206.2581330
https://doi.org/10.1109/TIFS.2009.2019156
https://doi.org/10.1109/dsd.2019.00069
https://doi.org/10.3109/17483107.2010.512969
https://doi.org/10.3109/17483107.2010.512969
https://doi.org/10.1109/embc.2019.8856635
https://doi.org/10.1145/3411764.3445151
https://doi.org/10.1145/3411764.3445151
https://doi.org/10.1007/s10484-015-9328-3
https://doi.org/10.1007/s10484-015-9328-3
https://doi.org/10.1007/978-3-030-93709-6_26
https://doi.org/10.1007/978-3-030-93709-6_26
https://doi.org/10.1007/978-3-030-50729-9_24
https://doi.org/10.1007/978-3-030-50729-9_24
https://doi.org/10.3233/wor-2012-0435-2086
https://doi.org/10.1109/icaccs51430.2021.9441893
https://doi.org/10.1109/icssit48917.2020.9214223
https://doi.org/10.1109/icssit48917.2020.9214223
https://doi.org/10.1007/978-3-642-23771-3_1
https://doi.org/10.1145/3123024.3123083
https://doi.org/10.1249/mss.0000000000001328
https://doi.org/10.1016/j.cviu.2015.12.011
https://doi.org/10.1145/2800835.2800953
https://doi.org/10.1145/2677199.2680575
https://engineering.purdue.edu/~hongtan/pubs/Index.html
https://doi.org/10.1109/jsen.2020.2980207
https://doi.org/10.1109/jsen.2020.2980207
https://doi.org/10.1109/mpot.2009.934698
https://doi.org/10.18502/keg.v2i2.626
https://doi.org/10.18502/keg.v2i2.626
https://doi.org/10.1109/bmei.2012.6513203
https://doi.org/10.1109/bmei.2012.6513203
https://doi.org/10.1007/978-981-10-4157-0_76
https://doi.org/10.3390/s18072261
https://doi.org/10.1109/fleps.2019.8792250
https://doi.org/10.1145/2582051.2582081
https://doi.org/10.1145/2582051.2582081


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Krauter et al.

[85] Haruna Ishimatsu and Ryoko Ueoka. 2015. Finding the right feedback for self-
posture adjustment system for "BITAIKA". In Proc. SIGGRAPH Asia (SA). ACM,
NewYork, NY, USA, Article 26, 1 pages. https://doi.org/10.1145/2820926.2820972

[86] Ade Surya Iskandar, Ary Setijadi Prihatmanto, and Yoga Priyana. 2015. Design
and implementation electronic stethoscope on smart chair for monitoring heart
rate and stress levels driver. In Proc. Int. Conf. Interactive Digital Media (ICIDM).
EEE, New York, NY, USA, 1–6. https://doi.org/10.1109/idm.2015.7516338

[87] Nassim Jafarinaimi, Jodi Forlizzi, AmyHurst, and John Zimmerman. 2005. Break-
away: An Ambient Display Designed to Change Human Behavior. In Extended
Abstracts Human Factors in Computing Systems (CHI EA). ACM, Portland OR
USA, 1945–1948. https://doi.org/10.1145/1056808.1057063

[88] Mujtaba Hussain Jaffery, Muhammad Adil Ashraf, Ahmad Almogren,
Hafiza Mahnoor Asim, Jehangir Arshad, Javed Khan, Ateeq Ur Rehman, and
Seada Hussen. 2022. FSR-Based Smart System for Detection of Wheelchair
Sitting Postures Using Machine Learning Algorithms and Techniques. Journal
of Sensors 2022 (05 May 2022), 1–10. https://doi.org/10.1155/2022/1901058

[89] Alejandro Jaimes. 2005. Sit straight (and tell me what I did today). In Proc.
Workshop Continuous archival and retrieval of personal experiences (CARPE).
ACM, New York, NY, USA, 23–34. https://doi.org/10.1145/1099083.1099087

[90] Alejandro Jaimes. 2006. Posture and activity silhouettes for self-reporting,
interruption management, and attentive interfaces. In Proc. Intelligent user
interfaces (IUI). ACM, New York, NY, USA, 24–31. https://doi.org/10.1145/
1111449.1111463

[91] Yvonne Jansen, Pierre Dragicevic, Petra Isenberg, Jason Alexander, Abhijit
Karnik, Johan Kildal, Sriram Subramanian, and Kasper Hornbæk. 2015. Op-
portunities and Challenges for Data Physicalization. In Proc. Human Factors
in Computing Systems (CHI). ACM, New York, NY, USA, 3227–3236. https:
//doi.org/10.1145/2702123.2702180

[92] Haeseok Jeong and Woojin Park. 2021. Developing and Evaluating a Mixed
Sensor Smart Chair System for Real-Time Posture Classification: Combining
Pressure and Distance Sensors. IEEE Journal of Biomedical and Health Informatics
25, 5 (May 2021), 1805–1813. https://doi.org/10.1109/jbhi.2020.3030096

[93] Yang Jiang, Jie An, Fei Liang, Guoyu Zuo, Jia Yi, Chuan Ning, Hong Zhang,
Kai Dong, and Zhong Lin Wang. 2022. Knitted self-powered sensing textiles
for machine learning-assisted sitting posture monitoring and correction. Nano
Research 15, 9 (24 May 2022), 8389–8397. https://doi.org/10.1007/s12274-022-
4409-0

[94] Rose Johnson, Janet van der Linden, and Yvonne Rogers. 2010. To buzz or
not to buzz: improving awareness of posture through vibrotactile feedback.
https://oro.open.ac.uk/23375/

[95] Kazuhiro Kamiya, Mineichi Kudo, Hidetoshi Nonaka, and Jun Toyama. 2008.
Sitting posture analysis by pressure sensors. In Proc. Int. Conf. Pattern Recognition
(ICPR). IEEE, New York, NY, USA, 1–4. https://doi.org/10.1109/icpr.2008.4761863

[96] Arpita Mallikarjuna Kappattanavar, Harry Freitas da Cruz, Bert Arnrich, and
Erwin Bottinger. 2020. Position Matters: Sensor Placement for Sitting Posture
Classification. In Proc. Int. Conf. Healthcare Informatics (ICHI). IEEE, New York,
NY, USA, 1–6. https://doi.org/10.1109/ichi48887.2020.9374328

[97] Arpita Mallikarjuna Kappattanavar, Nico Steckhan, Jan Philipp Sachs, Harry Fre-
itas da Cruz, Erwin Böttinger, and Bert Arnrich. 2021. Monitoring of Sitting
Postures With Sensor Networks in Controlled and Free-living Environments:
Systematic Review. JMIR Biomedical Engineering 6, 1 (1 March 2021), e21105.
https://doi.org/10.2196/21105

[98] Gourab Kar and Alan Hedge. 2020. Effects of a sit-stand-walk intervention on
musculoskeletal discomfort, productivity, and perceived physical and mental
fatigue, for computer-based work. International Journal of Industrial Ergonomics
78 (July 2020), 102983. https://doi.org/10.1016/j.ergon.2020.102983

[99] Hikaru Katayama, Teruhiro Mizomoto, Hamada Rizk, and Hirozumi Yamaguchi.
2022. You Work We Care: Sitting Posture Assessment Based on Point Cloud
Data. In Proc. Pervasive Computing and Communications Workshops and other
Affiliated Events (PerCom). IEEE, New York, NY, USA, 121–123. https://doi.org/
10.1109/percomworkshops53856.2022.9767292

[100] Peter T. Katzmarzyk, Robert Ross, Steven N. Blair, and Jean-Pierre Després. 2020.
Should we target increased physical activity or less sedentary behavior in the
battle against cardiovascular disease risk development? Atherosclerosis 311 (01
Oct. 2020), 107–115. https://doi.org/10.1016/j.atherosclerosis.2020.07.010

[101] Rushil Khurana, Elena Marinelli, Tulika Saraf, and Shan Li. 2014. NeckGraffe. In
Extended Abstracts Human Factors in Computing Systems (CHI EA). ACM, New
York, NY, USA, 227–232. https://doi.org/10.1145/2559206.2580936

[102] Joohee Kim, Na Hyeon Lee, Byung-Chull Bae, and Jun Dong Cho. 2016. A
Feedback System for the Prevention of Forward Head Posture in SedentaryWork
Environments. In Proc. Conf. Companion Publication on Designing Interactive
Systems (DIS). ACM, New York, NY, USA, 161–164. https://doi.org/10.1145/
2908805.2909414

[103] Wonjoon Kim, Byungki Jin, Sanghyun Choo, Chang S. Nam, and Myung Hwan
Yun. 2019. Designing of smart chair for monitoring of sitting posture using
convolutional neural networks. Data Technologies and Applications 53, 2 (01 Feb.
2019), 142–155. https://doi.org/10.1108/dta-03-2018-0021

[104] Yong Kim, Youngdoo Son, Wonjoon Kim, Byungki Jin, and Myung Yun. 2018.
Classification of Children’s Sitting Postures UsingMachine Learning Algorithms.
Applied Sciences 8, 8 (Aug. 2018), 1280. https://doi.org/10.3390/app8081280

[105] Kattoju Kiran, Corey Pittman, Yasmine Moolenar, and Joseph Laviola. 2021.
Automatic Slouching Detection and Correction Utilizing Electrical Muscle Stim-
ulation. In Proc. Graphics Interface (GI). Junction Publishing, Virtual Event, 147
– 155. https://doi.org/10.20380/GI2021.17

[106] Vasileios Korakakis, Kieran O’Sullivan, Peter B. O’Sullivan, Vasiliki Evagelinou,
Yiannis Sotiralis, Alexandros Sideris, Konstantinos Sakellariou, Stefanos Karana-
sios, and Giannis Giakas. 2019. Physiotherapist Perceptions of Optimal Sitting
and Standing Posture. Musculoskeletal Science and Practice 39 (Feb. 2019), 24–31.
https://doi.org/10.1016/j.msksp.2018.11.004

[107] Audrius Kulikajevas, Rytis Maskeliunas, and Robertas Damaševičius. 2021. De-
tection of sitting posture using hierarchical image composition and deep learn-
ing. PeerJ Computer Science 7 (March 2021), e442. https://doi.org/10.7717/peerj-
cs.442

[108] Janusz Kulon, Adam Partlow, Colin Gibson, Ian Wilson, and Steven Wilcox.
2013. Rule-based algorithm for the classification of sitting postures in the
sagittal plane from the Cardiff Body Match measurement system. Journal of
Medical Engineering & Technology 38, 1 (Oct. 2013), 5–15. https://doi.org/10.
3109/03091902.2013.844208

[109] A Chaitanya Kumar and V G Sridhar. 2021. Design and Analytics of Smart
Posture Monitoring System. Journal of Physics: Conference Series 2115, 1 (Nov.
2021), 012048. https://doi.org/10.1088/1742-6596/2115/1/012048

[110] Rakesh Kumar, Alec Bayliff, Debraj De, Adam Evans, Sajal K. Das, and Mignon
Makos. 2016. Care-Chair: Sedentary Activities and Behavior Assessment with
Smart Sensing on Chair Backrest. In Proc. Smart Computing (SMARTCOMP).
IEEE, New York, NY, USA, 1–8. https://doi.org/10.1109/smartcomp.2016.7501682

[111] Yi-Liang Kuo, Kuo-Yuan Huang, Chieh-Yu Kao, and Yi-Ju Tsai. 2021. Sitting
Posture during Prolonged Computer Typing with and without a Wearable
Biofeedback Sensor. International Journal of Environmental Research and Public
Health 18, 10 (May 2021), 5430. https://doi.org/10.3390/ijerph18105430

[112] Yi-Liang Kuo, Pei-San Wang, Po-Yen Ko, Kuo-Yuan Huang, and Yi-Ju Tsai. 2019.
Immediate effects of real-time postural biofeedback on spinal posture, muscle
activity, and perceived pain severity in adults with neck pain. Gait & Posture 67
(Jan. 2019), 187–193. https://doi.org/10.1016/j.gaitpost.2018.10.021

[113] Yuri Kwon, Ji-Won Kim, Jae-Hoon Heo, Hyeong-Min Jeon, Eui-Bum Choi, and
Gwang-Moon Eom. 2018. The effect of sitting posture on the loads at cervico-
thoracic and lumbosacral joints. Technology and Health Care 26, S1 (May 2018),
409–418. https://doi.org/10.3233/thc-174717

[114] Kevin Lam, Hansjörg Baurecht, Kathrin Pahmeier, Anja Niemann, Carolin
Romberg, Janine Biermann-Stallwitz, Silke Neusser, Jürgen Wasem, et al. 2022.
How effective and how expensive are interventions to reduce sedentary behav-
ior? An umbrella review and meta-analysis. Obesity Reviews 23, 5 (Jan. 2022),
e13422. https://doi.org/10.1111/obr.13422

[115] Patrizia Lamberti, Monica La Mura, Marco De Gregorio, Vincenzo Tucci, and
Luigi Egiziano. 2022. Smart Seat With Real-Time Asymmetrical Sitting Alert.
In Proc. Workshop Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT). IEEE,
New York, NY, USA, 34–38. https://doi.org/10.1109/metroind4.0iot54413.2022.
9831582

[116] Jaebong Lee, Eunji Cho, Minjae Kim, Yongmin Yoon, and Seungmoon Choi.
2014. PreventFHP: Detection and warning system for Forward Head Posture.
In Proc. Haptics Symp. (HAPTICS). IEEE, New York, NY, USA, 295–298. https:
//doi.org/10.1109/haptics.2014.6775470

[117] Seung-Min Lee, Hyeon-Ju Kim, So-Jeong Ham, and Sunhee Kim. 2021. Assistive
Devices to Help Correct Sitting-Posture Based on Posture Analysis Results.
JOIV: International Journal on Informatics Visualization 5, 3 (Sept. 2021), 340.
https://doi.org/10.30630/joiv.5.3.673

[118] Yoonjin Lee, Donghyun Beck, and Woojin Park. 2020. Human Factors Eval-
uation of an Ambient Display for Real-Time Posture Feedback to Sedentary
Workers. IEEE Access 8 (2020), 223405–223417. https://doi.org/10.1109/access.
2020.3044316

[119] Miaoyu Li, Zhuohan Jiang, Yutong Liu, Shuheng Chen, Marcin Wozniak, Rafal
Scherer, Robertas Damasevicius, Wei Wei, et al. 2021. Sitsen: Passive sitting
posture sensing based on wireless devices. International Journal of Distributed
Sensor Networks 17, 7 (July 2021), 155014772110248. https://doi.org/10.1177/
15501477211024846

[120] Xuexia Li, Zhun Xiao, and Kun Yang. 2020. The Design of Seat for Sitting Posture
Correction Based on Ergonomics. In Proc. Int. Conf. Computer Engineering and
Application (ICCEA). IEEE, New York, NY, USA, 703–706. https://doi.org/10.
1109/iccea50009.2020.00153

[121] Yue Li and Rachid Aissaoui. 2006. Smart Sensor, Smart Chair, Can it Predicts
Your Sitting Posture?. In Proc. Int. Symp. Industrial Electronics (ISIE, Vol. 4). IEEE,
New York, NY, USA, 2754–2759. https://doi.org/10.1109/isie.2006.296050

[122] Guanqing Liang, Jiannong Cao, and Xuefeng Liu. 2017. Smart cushion: A
practical system for fine-grained sitting posture recognition. In Proc. Pervasive
Computing and Communications Workshops (PerCom Workshops). IEEE, New
York, NY, USA, 419–424. https://doi.org/10.1109/percomw.2017.7917599

https://doi.org/10.1145/2820926.2820972
https://doi.org/10.1109/idm.2015.7516338
https://doi.org/10.1145/1056808.1057063
https://doi.org/10.1155/2022/1901058
https://doi.org/10.1145/1099083.1099087
https://doi.org/10.1145/1111449.1111463
https://doi.org/10.1145/1111449.1111463
https://doi.org/10.1145/2702123.2702180
https://doi.org/10.1145/2702123.2702180
https://doi.org/10.1109/jbhi.2020.3030096
https://doi.org/10.1007/s12274-022-4409-0
https://doi.org/10.1007/s12274-022-4409-0
https://oro.open.ac.uk/23375/
https://doi.org/10.1109/icpr.2008.4761863
https://doi.org/10.1109/ichi48887.2020.9374328
https://doi.org/10.2196/21105
https://doi.org/10.1016/j.ergon.2020.102983
https://doi.org/10.1109/percomworkshops53856.2022.9767292
https://doi.org/10.1109/percomworkshops53856.2022.9767292
https://doi.org/10.1016/j.atherosclerosis.2020.07.010
https://doi.org/10.1145/2559206.2580936
https://doi.org/10.1145/2908805.2909414
https://doi.org/10.1145/2908805.2909414
https://doi.org/10.1108/dta-03-2018-0021
https://doi.org/10.3390/app8081280
https://doi.org/10.20380/GI2021.17
https://doi.org/10.1016/j.msksp.2018.11.004
https://doi.org/10.7717/peerj-cs.442
https://doi.org/10.7717/peerj-cs.442
https://doi.org/10.3109/03091902.2013.844208
https://doi.org/10.3109/03091902.2013.844208
https://doi.org/10.1088/1742-6596/2115/1/012048
https://doi.org/10.1109/smartcomp.2016.7501682
https://doi.org/10.3390/ijerph18105430
https://doi.org/10.1016/j.gaitpost.2018.10.021
https://doi.org/10.3233/thc-174717
https://doi.org/10.1111/obr.13422
https://doi.org/10.1109/metroind4.0iot54413.2022.9831582
https://doi.org/10.1109/metroind4.0iot54413.2022.9831582
https://doi.org/10.1109/haptics.2014.6775470
https://doi.org/10.1109/haptics.2014.6775470
https://doi.org/10.30630/joiv.5.3.673
https://doi.org/10.1109/access.2020.3044316
https://doi.org/10.1109/access.2020.3044316
https://doi.org/10.1177/15501477211024846
https://doi.org/10.1177/15501477211024846
https://doi.org/10.1109/iccea50009.2020.00153
https://doi.org/10.1109/iccea50009.2020.00153
https://doi.org/10.1109/isie.2006.296050
https://doi.org/10.1109/percomw.2017.7917599


Sitting Posture Recognition and Feedback CHI ’24, May 11–16, 2024, Honolulu, HI, USA

[123] Da-Yin Liao. 2016. Design of a Secure, Biofeedback, Head-and-Neck Posture
Correction System. In Proc. Connected Health: Applications, Systems and En-
gineering Technologies (CHASE). IEEE, New York, NY, USA, 119–124. https:
//doi.org/10.1109/chase.2016.31

[124] Da-Yin Liao. 2017. Collaborative, Social-networked Posture Training (CSPT)
through Head-and-Neck Posture Monitoring and Biofeedbacks. In Proc. Int.
Conf. Enterprise Information Systems (ICEIS). INSTICC, SCITEPRESS, Setúbal,
Portugal, 158–165. https://doi.org/10.5220/0006358301580165

[125] Tsung-Yen Liao, Shaou-Gang Miaou, and Yu-Ren Li. 2010. A vision-based
walking posture analysis system without markers. In Proc. Int. Conf. Signal
Processing Systems (ICSPS, Vol. 3). IEEE, New York, NY, USA, V3–254–V3–258.
https://doi.org/10.1109/ICSPS.2010.5555656

[126] Gian Domenico Licciardo, Alessandro Russo, Alessandro Naddeo, Nicola Cap-
petti, Luigi Di Benedetto, Alfredo Rubino, and Rosalba Liguori. 2021. A Re-
source Constrained Neural Network for the Design of Embedded Human Pos-
ture Recognition Systems. Applied Sciences 11, 11 (May 2021), 4752. https:
//doi.org/10.3390/app11114752

[127] C. C. Lim, S. Basah, Md. Asraf Ali, and C. Y. Fook. 2018. Wearable Posture
Identification System for Good Sitting Position. Journal of Telecommunication,
Electronic and Computer Engineering (JTEC) 10, 1-16 (May 2018), 135–140. https:
//jtec.utem.edu.my/jtec/article/view/4144

[128] Baolong Liu, Yi Li, Sanyuan Zhang, and Xiuzi Ye. 2016. Healthy human sitting
posture estimation in RGB-D scenes using object context. Multimedia Tools and
Applications 76, 8 (01 Jan. 2016), 10721–10739. https://doi.org/10.1007/s11042-
015-3189-x

[129] J Liu. 2021. Development of an Intelligent Office Chair by Combining Vibrotactile
and Visual Feedbacks. Journal of Physics: Conf. Series 1877, 1 (April 2021), 012015.
https://doi.org/10.1088/1742-6596/1877/1/012015

[130] Wenjun Liu, Yunfei Guo, Jun Yang, Yun Hu, and Dapeng Wei. 2019. Sitting
Posture Recognition Based on Human Body Pressure and CNN. AIP Conf. Proc.
2073, 1 (2019), 020093. https://doi.org/10.1063/1.5090747

[131] Francisco Luna-Perejón, Juan Manuel Montes-Sánchez, Lourdes Durán-López,
Alberto Vazquez-Baeza, Isabel Beasley-Bohórquez, and José L. Sevillano-Ramos.
2021. IoT Device for Sitting Posture Classification Using Artificial Neu-
ral Networks. Electronics 10, 15 (July 2021), 1825. https://doi.org/10.3390/
electronics10151825

[132] Congcong Ma, Wenfeng Li, Raffaele Gravina, Juan Du, Qimeng Li, and Giancarlo
Fortino. 2020. Smart Cushion-Based Activity Recognition: Prompting Users
to Maintain a Healthy Seated Posture. IEEE Systems, Man, and Cybernetics
Magazine 6, 4 (Oct. 2020), 6–14. https://doi.org/10.1109/msmc.2019.2962226

[133] Congcong Ma, Wenfeng Li, Raffaele Gravina, and Giancarlo Fortino. 2017. Pos-
ture Detection Based on Smart Cushion for Wheelchair Users. Sensors 17, 4
(March 2017), 719. https://doi.org/10.3390/s17040719

[134] Sangyong Ma, Woo-Hyeong Cho, Cheng-Hao Quan, and Sangmin Lee. 2016.
A sitting posture recognition system based on 3 axis accelerometer. In Proc.
Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).
IEEE, New York, NY, USA, 1–3. https://doi.org/10.1109/cibcb.2016.7758131

[135] John Cloie T. Mallare, Dianne Faye G. Pineda, Gerald M. Trinidad, Reymond D.
Serafica, Jules Benedict K. Villanueva, Angelo R. Dela Cruz, Ryan Rhay P. Vicerra,
Kanny Krizzy D. Serrano, and Edison A. Roxas. 2017. Sitting posture assessment
using computer vision. In Proc. Humanoid, Nanotechnology, Information Tech-
nology, Communication and Control, Environment and Management (HNICEM).
IEEE, New York, NY, USA, 1–5. https://doi.org/10.1109/hnicem.2017.8269473

[136] Arnas Martinaitis and Kristina Daunoraviciene. 2018. Low cost self-made
pressure distribution sensors for ergonomic chair: Are they suitable for posture
monitoring? Technology and Health Care 26, S2 (2018), 655–663. https://doi.
org/10.3233/THC-182512

[137] Leonardo Martins, Rui Lucena, Rui Almeida, João Belo, Cláudia Quaresma,
Adelaide Jesus, and Pedro Vieira. 2014. Intelligent Chair Sensor. International
Journal of System Dynamics Applications 3, 2 (April 2014), 65–80. https://doi.
org/10.4018/ijsda.2014040105

[138] Leonardo Martins, Bruno Ribeiro, Rui Almeida, Hugo Pereira, Adelaide Jesus,
Cláudia Quaresma, and Pedro Vieira. 2016. Optimization of Sitting Posture
Classification based on Anthropometric Data. In Proc. Biomedical Engineering
Systems and Technologies (BIOSTEC). SCITEPRESS, Setúbal, Portugal, 406–413.
https://doi.org/10.5220/0005790104060413

[139] Leonardo Martins, Bruno Ribeiro, Hugo Pereira, Rui Almeida, Jéssica Costa,
Cláudia Quaresma, Adelaide Jesus, and Pedro Vieira. 2015. Real-Time Fuzzy
Monitoring of Sitting Posture: Development of a New Prototype and a New
Posture Classification Algorithm to Detect Postural Transitions. In Proc. Biomed-
ical Engineering Systems and Technologies (BIOSTEC). Springer Nature, Cham,
424–439. https://doi.org/10.1007/978-3-319-27707-3_26

[140] Slavomir Matuska, Martin Paralic, and Robert Hudec. 2020. A Smart System
for Sitting Posture Detection Based on Force Sensors and Mobile Application.
Mobile Information Systems 2020 (19 Nov. 2020), 1–13. https://doi.org/10.1155/
2020/6625797

[141] Lynn McAtamney and E. Nigel Corlett. 1993. RULA: a survey method for the
investigation of work-related upper limb disorders. Applied Ergonomics 24, 2

(April 1993), 91–99. https://doi.org/10.1016/0003-6870(93)90080-s
[142] Jan Meyer, Bert Arnrich, Johannes Schumm, and Gerhard Troster. 2010. Design

and Modeling of a Textile Pressure Sensor for Sitting Posture Classification.
IEEE Sensors Journal 10, 8 (Aug. 2010), 1391–1398. https://doi.org/10.1109/jsen.
2009.2037330

[143] Deedee A. Min, Yaejin Kim, Sung A. Jang, Keun Young Kim, Su-Eun Jung,
and Ji-Hyun Lee. 2015. Pretty Pelvis. In Extended Abstracts Human Factors in
Computing Systems (CHI EA). ACM, New York, NY, USA, 1259–1264. https:
//doi.org/10.1145/2702613.2732807

[144] WeidongMin, Hao Cui, QingHan, and Fangyuan Zou. 2018. A Scene Recognition
and Semantic Analysis Approach to Unhealthy Sitting Posture Detection during
Screen-Reading. Sensors 18, 9 (16 Sept. 2018), 3119. https://doi.org/10.3390/
s18093119

[145] Teruhiro Mizumoto, Yasuhiro Otoda, Chihiro Nakajima, Mitsuhiro Kohana,
Motohiro Uenishi, Keiichi Yasumoto, and Yutaka Arakawa. 2020. Design and
Implementation of Sensor-Embedded Chair for Continuous Sitting Posture
Recognition. IEICE Transactions on Information and Systems E103.D, 5 (May
2020), 1067–1077. https://doi.org/10.1587/transinf.2019EDP7226

[146] David Moher, Deborah J Cook, Susan Eastwood, Ingram Olkin, Drummond
Rennie, and Donna F Stroup. 1999. Improving the Quality of Reports of Meta-
Analyses of Randomised Controlled Trials: The QUOROM Statement. The Lancet
354, 9193 (1999), 1896–1900. https://doi.org/10.1016/S0140-6736(99)04149-5

[147] Vimal Mollyn, Riku Arakawa, Mayank Goel, Chris Harrison, and Karan Ahuja.
2023. IMUPoser: Full-Body Pose Estimation using IMUs in Phones, Watches,
and Earbuds. In Proc. Human Factors in Computing Systems (CHI). ACM, New
York, NY, USA, Article 529, 12 pages. https://doi.org/10.1145/3544548.3581392

[148] KwangsuMoon and Shezeen Oah. 2013. A Comparison of the Effects of Feedback
and Prompts on Safe Sitting Posture: Utilizing an Automated Observation and
Feedback System. Journal of Organizational Behavior Management 33, 2 (June
2013), 152–162. https://doi.org/10.1080/01608061.2013.785906

[149] Vasily G. Moshnyaga, Koji Hashimoto, Tomohiro Nogami, and Kazuki Nojima.
2019. Design of wireless smart chair system for people with cognitive deficiency.
In Proc. Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, New
York, NY, USA, 1219–1222. https://doi.org/10.1109/mwscas.2019.8884971

[150] Lan Mu, Ke Li, and Chunhong Wu. 2010. A sitting posture surveillance system
based on image processing technology. In Proc. Int. Conf. Computer Engineering
and Technology (ICCET, Vol. 1). IEEE, New York, NY, USA, V1–692–V1–695.
https://doi.org/10.1109/iccet.2010.5485381

[151] Kazuyoshi Murata and Yu Shibuya. 2016. Graphical Notification to Maintain
Good Posture during Visual Display Terminal Work. IFAC-PapersOnLine 49, 19
(2016), 289–294. https://doi.org/10.1016/j.ifacol.2016.10.551 13th IFAC Sym-
posium on Analysis, Design, and Evaluation ofHuman-Machine Systems HMS
2016.

[152] Bilge Mutlu, Andreas Krause, Jodi Forlizzi, Carlos Guestrin, and Jessica Hodgins.
2007. Robust, Low-Cost, Non-Intrusive Sensing and Recognition of Seated
Postures. In Proc. Symp. User Interface Software and Technology (UIST). ACM,
New York, NY, USA, 149–158. https://doi.org/10.1145/1294211.1294237

[153] National Library of Medicine. 2022. Guide to Good Posture. National Library of
Medicine. https://medlineplus.gov/guidetogoodposture.html

[154] David Ng, Tom Cassar, and Clifford M. Gross. 1995. Evaluation of an intelligent
seat system. Applied Ergonomics 26, 2 (April 1995), 109–116. https://doi.org/10.
1016/0003-6870(95)00006-x

[155] Arinobu Niijima. 2021. Posture Feedback System with Wearable Speaker. In
Proc. Engineering in Medicine Biology Society (EMBC). IEEE, New York, NY, USA,
7007–7010. https://doi.org/10.1109/embc46164.2021.9630687

[156] Tatsuki Nishida and Koji Tsukada. 2017. StandOuter. In Proc. Int. Joint Conf.
Pervasive and Ubiquitous Computing and Proc. International Symp. Wearable
Computers (UbiComp). ACM, New York, NY, USA, 273–276. https://doi.org/10.
1145/3123024.3123178

[157] Nusrat Binta Nizam, Tohfatul Jinan, Wahida Binte Naz Aurthy, Md. Rakib
Hossen, and Jahid Ferdous. 2020. Android Based Low Cost Sitting Posture Mon-
itoring System. In Proc. Int. Conf. Electrical and Computer Engineering (ICECE).
IEEE, New York, NY, USA, 161–164. https://doi.org/10.1109/icece51571.2020.
9393150

[158] F O’Brien and NH Azrin. 1970. Behavioral engineering: control of posture
by informational feedback1. Journal of Applied Behavior Analysis 3, 4 (1970),
235–240. https://doi.org/10.1901/jaba.1970.3-235

[159] S Fernando Ochoa et al. 2018. Poor Posture Indicator by Means of Accelerom-
eters, with Voice Alarm using a Smartphone with Android. Indian Journal of
Science and Technology 11, 40 (Oct. 2018), 1–8. https://doi.org/10.17485/ijst/
2018/v11i40/132359

[160] Mircea-Nicolae Ordean, Alexandru Oarcea, Sergiu-Dan Stan, Diana-Mirela Du-
mitru, Victor Cobîlean, andMarius-Constantin Bîrză. 2022. Analysis of Available
Solutions for the Improvement of Body Posture in Chairs. Applied Sciences 12,
13 (June 2022), 6489. https://doi.org/10.3390/app12136489

[161] Yasuhiro Otoda, Teruhiro Mizumoto, Yutaka Arakawa, Chihiro Nakajima, Mit-
suhiro Kohana, Motohiro Uenishi, and Keiichi Yasumoto. 2018. Census: Con-
tinuous posture sensing chair for office workers. In Proc. Int. Conf. Consumer

https://doi.org/10.1109/chase.2016.31
https://doi.org/10.1109/chase.2016.31
https://doi.org/10.5220/0006358301580165
https://doi.org/10.1109/ICSPS.2010.5555656
https://doi.org/10.3390/app11114752
https://doi.org/10.3390/app11114752
https://jtec.utem.edu.my/jtec/article/view/4144
https://jtec.utem.edu.my/jtec/article/view/4144
https://doi.org/10.1007/s11042-015-3189-x
https://doi.org/10.1007/s11042-015-3189-x
https://doi.org/10.1088/1742-6596/1877/1/012015
https://doi.org/10.1063/1.5090747
https://doi.org/10.3390/electronics10151825
https://doi.org/10.3390/electronics10151825
https://doi.org/10.1109/msmc.2019.2962226
https://doi.org/10.3390/s17040719
https://doi.org/10.1109/cibcb.2016.7758131
https://doi.org/10.1109/hnicem.2017.8269473
https://doi.org/10.3233/THC-182512
https://doi.org/10.3233/THC-182512
https://doi.org/10.4018/ijsda.2014040105
https://doi.org/10.4018/ijsda.2014040105
https://doi.org/10.5220/0005790104060413
https://doi.org/10.1007/978-3-319-27707-3_26
https://doi.org/10.1155/2020/6625797
https://doi.org/10.1155/2020/6625797
https://doi.org/10.1016/0003-6870(93)90080-s
https://doi.org/10.1109/jsen.2009.2037330
https://doi.org/10.1109/jsen.2009.2037330
https://doi.org/10.1145/2702613.2732807
https://doi.org/10.1145/2702613.2732807
https://doi.org/10.3390/s18093119
https://doi.org/10.3390/s18093119
https://doi.org/10.1587/transinf.2019EDP7226
https://doi.org/10.1016/S0140-6736(99)04149-5
https://doi.org/10.1145/3544548.3581392
https://doi.org/10.1080/01608061.2013.785906
https://doi.org/10.1109/mwscas.2019.8884971
https://doi.org/10.1109/iccet.2010.5485381
https://doi.org/10.1016/j.ifacol.2016.10.551
https://doi.org/10.1145/1294211.1294237
https://medlineplus.gov/guidetogoodposture.html
https://doi.org/10.1016/0003-6870(95)00006-x
https://doi.org/10.1016/0003-6870(95)00006-x
https://doi.org/10.1109/embc46164.2021.9630687
https://doi.org/10.1145/3123024.3123178
https://doi.org/10.1145/3123024.3123178
https://doi.org/10.1109/icece51571.2020.9393150
https://doi.org/10.1109/icece51571.2020.9393150
https://doi.org/10.1901/jaba.1970.3-235
https://doi.org/10.17485/ijst/2018/v11i40/132359
https://doi.org/10.17485/ijst/2018/v11i40/132359
https://doi.org/10.3390/app12136489


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Krauter et al.

Electronics (ICCE). IEEE, New York, NY, USA, 1–2. https://doi.org/10.1109/icce.
2018.8326275

[162] Pujana Paliyawan, Chakarida Nukoolkit, and Pornchai Mongkolnam. 2014.
Prolonged sitting detection for office workers syndrome prevention using kinect.
In Proc. Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON). IEEE, New York, NY, USA, 1–6. https:
//doi.org/10.1109/ecticon.2014.6839785

[163] Jang-Ho Park and Divya Srinivasan. 2021. The effects of prolonged sitting,
standing, and an alternating sit-stand pattern on trunk mechanical stiffness,
trunk muscle activation and low back discomfort. Ergonomics 64, 8 (March
2021), 983–994. https://doi.org/10.1080/00140139.2021.1886333

[164] Mingyu Park, Younghoon Song, Jaewon Lee, and Jeongyeup Paek. 2016. Design
and Implementation of a smart chair system for IoT. In Proc. Information and
Communication Technology Convergence (ICTC). IEEE, New York, NY, USA,
1200–1203. https://doi.org/10.1109/ictc.2016.7763406

[165] Se-yeon Park andWon-gyu Yoo. 2012. Effect of EMG-based Feedback on Posture
Correction during Computer Operation. Journal of Occupational Health 54, 4
(July 2012), 271–277. https://doi.org/10.1539/joh.12-0052-oa

[166] Adam Partlow, Colin Gibson, and Janusz Kulon. 2021. 3D posture visualisation
from body shape measurements using physics simulation, to ascertain the
orientation of the pelvis and femurs in a seated position. Computer Methods
and Programs in Biomedicine 198 (Jan. 2021), 105772. https://doi.org/10.1016/j.
cmpb.2020.105772

[167] Hugo Pereira, LeonardoMartins, Rui Almeida, Bruno Ribeiro, Claudia Quaresma,
Adelaide Ferreira, and Pedro Vieira. 2015. System for Posture Evaluation and
Correction - Development of a Second Prototype for an Intelligent Chair. In Proc.
Biomedical Electronics and Devices (BIOSTEC). INSTICC, SCITEPRESS, Setúbal,
Portugal, 204–209. https://doi.org/10.5220/0005286002040209

[168] S. Camille Peres, Ranjana K. Mehta, and Paul Ritchey. 2017. Assessing ergonomic
risks of software: Development of the SEAT. Applied Ergonomics 59 (March
2017), 377–386. https://doi.org/10.1016/j.apergo.2016.09.014

[169] Nerea Perez, Patrick Vermander, Elena Lara, Aitziber Mancisidor, and Itziar
Cabanes. 2021. Sitting Posture Monitoring Device for People with Low Degree
of Autonomy. In Proc. Int. Conf. NeuroRehabilitation (ICNR). Springer Nature,
Cham, 305–310. https://doi.org/10.1007/978-3-030-70316-5_49

[170] Anastasios Petropoulos, Dimitrios Sikeridis, and Theodore Antonakopoulos.
2017. SPoMo: IMU-based real-time sitting posture monitoring. In Proc. Int.
Conf. Consumer Electronics - Berlin (ICCE-Berlin). IEEE, New York, NY, USA, 5–9.
https://doi.org/10.1109/icce-berlin.2017.8210574

[171] Anastasios Petropoulos, Dimitrios Sikeridis, and Theodore Antonakopoulos.
2020. Wearable Smart Health Advisors: An IMU-Enabled Posture Monitor. IEEE
Consumer Electronics Magazine 9, 5 (Sept. 2020), 20–27. https://doi.org/10.1109/
mce.2019.2956205

[172] Benyapa Prueksanusak, Punawatchara Rujivipatand, and Konlakorn Wong-
patikaseree. 2019. An Ergonomic Chair with Internet of Thing Technol-
ogy using SVM. In Proc. Technology Innovation Management and Engineer-
ing Science Int. Conf. (TIMES-iCON). IEEE, New York, NY, USA, 1–5. https:
//doi.org/10.1109/times-icon47539.2019.9024488

[173] Zhe Qian, Anton Bowden, Dong Zhang, Jia Wan, Wei Liu, Xiao Li, Daniel
Baradoy, and David Fullwood. 2018. Inverse Piezoresistive Nanocomposite
Sensors for Identifying Human Sitting Posture. Sensors 18, 6 (May 2018), 1745.
https://doi.org/10.3390/s18061745

[174] Mritha Ramalingam, R. Puviarasi, Elanchezhian Chinnavan, Quah Chia Sh-
ern, and Mohamad Fadli Zolkipli. 2021. Alarming Assistive Technology: An
IoT enabled Sitting Posture Monitoring System. In Proc. Int. Conf. Software
Engineering & Computer Systems and Int. Conf. Computational Science and In-
formation Management (ICSECS-ICOCSIM). IEEE, New York, NY, USA, 592–597.
https://doi.org/10.1109/icsecs52883.2021.00114

[175] Xu Ran, Cong Wang, Yao Xiao, Xuliang Gao, Zhiyuan Zhu, and Bin Chen. 2021.
A portable sitting posture monitoring system based on a pressure sensor array
and machine learning. Sensors and Actuators A: Physical 331 (Nov. 2021), 112900.
https://doi.org/10.1016/j.sna.2021.112900

[176] Xipei Ren, Bin Yu, Yuan Lu, Yu Chen, and Pearl Pu. 2019. HealthSit: Designing
Posture-Based Interaction to Promote Exercise during Fitness Breaks. Inter-
national Journal of Human–Computer Interaction 35, 10 (June 2019), 870–885.
https://doi.org/10.1080/10447318.2018.1506641

[177] Xipei Ren, Bin Yu, Yuan Lu, Biyong Zhang, Jun Hu, and Aarnout Brombacher.
2019. LightSit: An Unobtrusive Health-Promoting System for Relaxation and
Fitness Microbreaks at Work. Sensors 19, 9 (May 2019), 2162. https://doi.org/10.
3390/s19092162

[178] Leandro Fórnias Machado Rezende, Thiago Hérick Sá, Grégore Iven Mielke,
Juliana Yukari Kodaira Viscondi, Juan Pablo Rey-López, and Leandro Mar-
tin Totaro Garcia. 2016. All-Cause Mortality Attributable to Sitting Time.
American Journal of Preventive Medicine 51, 2 (Aug. 2016), 253–263. https:
//doi.org/10.1016/j.amepre.2016.01.022

[179] Bruno Ribeiro, Hugo Pereira, Rui Almeida, Adelaide Ferreira, Leonardo Mar-
tins, Claudia Quaresma, and Pedro Vieira. 2015. Optimization of sitting

posture classification based on user identification. In Proc. Portuguese Meet-
ing on Bioengineering (ENBENG). IEEE, New York, NY, USA, 1–6. https:
//doi.org/10.1109/enbeng.2015.7088853

[180] Daniel Cury Ribeiro, Gisela Sole, J. Haxby Abbott, and Stephan Milosavljevic.
2014. The Effectiveness of a Lumbopelvic Monitor and Feedback Device to
Change Postural Behavior: A Feasibility Randomized Controlled Trial. Journal
of Orthopaedic & Sports Physical Therapy 44, 9 (Sept. 2014), 702–711. https:
//doi.org/10.2519/jospt.2014.5009

[181] Pedro Ribeiro, Ana Rita Soares, Rafael Girão, Miguel Neto, and Susana Cardoso.
2020. Spine Cop: Posture Correction Monitor and Assistant. Sensors 20, 18 (19
Sept. 2020), 5376. https://doi.org/10.3390/s20185376

[182] Erik Rietveld, Ronald Rietveld, Arna Mackic, Elke van Waalwijk van Doorn,
and Bastiaan Bervoets. 2015. The end of sitting. Harvard Design Magazine 40
(2015), 180–181. https://www.narcis.nl/publication/RecordID/oai:dare.uva.nl:
publications%2Fd05f8605-7c75-4545-b013-a032cded1f92

[183] Katja Rogers and Katie Seaborn. 2023. The Systematic Review-lution: A Man-
ifesto to Promote Rigour and Inclusivity in Research Synthesis. In Extended
Abstracts Human Factors in Computing Systems (CHI EA). ACM, Hamburg Ger-
many, 1–11. https://doi.org/10.1145/3544549.3582733

[184] Jongryun Roh, Joonho Hyeong, and Sayup Kim. 2019. Estimation of various sit-
ting postures using a load-cell-driven monitoring system. International Journal
of Industrial Ergonomics 74 (Nov. 2019), 102837. https://doi.org/10.1016/j.ergon.
2019.102837

[185] Jongryun Roh, Hyeong jun Park, Kwang Lee, Joonho Hyeong, Sayup Kim,
and Boreom Lee. 2018. Sitting Posture Monitoring System Based on a Low-
Cost Load Cell Using Machine Learning. Sensors 18, 2 (Jan. 2018), 208. https:
//doi.org/10.3390/s18010208

[186] C.C. Roossien, J. Stegenga, A.P. Hodselmans, S.M. Spook, W. Koolhaas, S.
Brouwer, G.J. Verkerke, and M.F. Reneman. 2017. Can a smart chair improve the
sitting behavior of office workers? Applied Ergonomics 65 (Nov. 2017), 355–361.
https://doi.org/10.1016/j.apergo.2017.07.012

[187] Paul D. Rosero-Montalvo, Vivian López-Batista, Vanessa E. Alvear Puertas,
Edgar Maya-Olalla, Mauricio Dominguez-Limaico, Marcelo Zambrano-Vizuete,
Ricardo P. Arciengas-Rocha, and Vanessa C. Erazo-Chamorro. 2019. An In-
telligent System for Detecting a Person Sitting Position to Prevent Lumbar
Diseases. In Proc. Future Technologies Conf. (FTC). Springer Nature, Cham, 836–
843. https://doi.org/10.1007/978-3-030-32520-6_60

[188] Paul D. Rosero-Montalvo, Diego Hernn Peluffo-Ordonez, Vivian Felix Lopez
Batista, Jorge Serrano, and Edwin A. Rosero. 2019. Intelligent System for Iden-
tification of Wheelchair User’s Posture Using Machine Learning Techniques.
IEEE Sensors Journal 19, 5 (March 2019), 1936–1942. https://doi.org/10.1109/
jsen.2018.2885323

[189] Silvia Rus, Andreas Braun, Florian Kirchbuchner, and Arjan Kuijper. 2019. E-
Textile Capacitive Electrodes: Fabric or Thread: Designing an E-Textile Cushion
for Sitting Posture Detection. In Proc. PErvasive Technologies Related to Assistive
Environments (PETRA). ACM, New York, NY, USA, 49–52. https://doi.org/10.
1145/3316782.3316785

[190] Luke Russell, Rafik Goubran, and Felix Kwamena. 2017. Posture sensing using
a low-cost temperature sensor array. In Proc. Symp. Medical Measurements and
Applications (MeMeA). IEEE, New York, NY, USA, 443–447. https://doi.org/10.
1109/memea.2017.7985917

[191] L. Russell, R. Goubran, and F. Kwamena. 2018. Posture Detection Using Sounds
and Temperature: LMS-Based Approach to Enable Sensory Substitution. IEEE
Transactions on Instrumentation and Measurement 67, 7 (July 2018), 1543–1554.
https://doi.org/10.1109/tim.2018.2795158

[192] Reza Samiei-Zonouz, Hamidreza Memarzadeh-Tehran, and Rouhollah Rahmani.
2014. Smartphone-centric human posture monitoring system. In Proc. Canada
Int. Humanitarian Technology Conf. (IHTC). IEEE, New York, NY, USA, 1–4.
https://doi.org/10.1109/ihtc.2014.7147534

[193] Maksim Sandybekov, Clemens Grabow, Maksym Gaiduk, and Ralf Seepold.
2019. Posture Tracking Using a Machine Learning Algorithm for a Home AAL
Environment. In Proc. KES Intelligent Decision Technologies (KES-IDT). Springer
Nature, Singapore, 337–347. https://doi.org/10.1007/978-981-13-8303-8_31

[194] Andreas Schrempf, Gerold Schossleitner, Thomas Minarik, Michael Haller,
and Sabine Gross. 2011. PostureCare – Towards a novel system for pos-
ture monitoring and guidance. IFAC Proc. Volumes 44, 1 (Jan. 2011), 593–598.
https://doi.org/10.3182/20110828-6-it-1002.02987 18th IFAC World Congress.

[195] Bernhard Schwartz, Andreas Schrempf, Kathrin Probst, Michael Haller, and
Josef Glöckl. 2013. Recognizing Static and Dynamic Sitting Behavior by Means
of Instrumented Office Chairs. In Proc. Biomedical Engineering (BioMed). ACTA-
PRESS, Calgary, AB, Canada, 67–74. https://doi.org/10.2316/p.2013.791-142

[196] Zuyu Shen, Xi Wan, Yucheng Jin, Ge Gao, Qianying Wang, and Wei Liu. 2021.
SeatPlus: A Smart Health Chair Supporting Active Sitting Posture Correction.
In Proc. Design, User Experience, and Usability: Design for Diversity, Well-being,
and Social Development (DUXU). Springer Nature, Cham, 531–547. https://doi.
org/10.1007/978-3-030-78224-5_37

[197] Joongi Shin, Woohyeok Choi, Uichin Lee, and Daniel Saakes. 2018. Actuating a
Monitor for Posture Changes. In Extended Abstracts Human Factors in Computing

https://doi.org/10.1109/icce.2018.8326275
https://doi.org/10.1109/icce.2018.8326275
https://doi.org/10.1109/ecticon.2014.6839785
https://doi.org/10.1109/ecticon.2014.6839785
https://doi.org/10.1080/00140139.2021.1886333
https://doi.org/10.1109/ictc.2016.7763406
https://doi.org/10.1539/joh.12-0052-oa
https://doi.org/10.1016/j.cmpb.2020.105772
https://doi.org/10.1016/j.cmpb.2020.105772
https://doi.org/10.5220/0005286002040209
https://doi.org/10.1016/j.apergo.2016.09.014
https://doi.org/10.1007/978-3-030-70316-5_49
https://doi.org/10.1109/icce-berlin.2017.8210574
https://doi.org/10.1109/mce.2019.2956205
https://doi.org/10.1109/mce.2019.2956205
https://doi.org/10.1109/times-icon47539.2019.9024488
https://doi.org/10.1109/times-icon47539.2019.9024488
https://doi.org/10.3390/s18061745
https://doi.org/10.1109/icsecs52883.2021.00114
https://doi.org/10.1016/j.sna.2021.112900
https://doi.org/10.1080/10447318.2018.1506641
https://doi.org/10.3390/s19092162
https://doi.org/10.3390/s19092162
https://doi.org/10.1016/j.amepre.2016.01.022
https://doi.org/10.1016/j.amepre.2016.01.022
https://doi.org/10.1109/enbeng.2015.7088853
https://doi.org/10.1109/enbeng.2015.7088853
https://doi.org/10.2519/jospt.2014.5009
https://doi.org/10.2519/jospt.2014.5009
https://doi.org/10.3390/s20185376
https://www.narcis.nl/publication/RecordID/oai:dare.uva.nl:publications%2Fd05f8605-7c75-4545-b013-a032cded1f92
https://www.narcis.nl/publication/RecordID/oai:dare.uva.nl:publications%2Fd05f8605-7c75-4545-b013-a032cded1f92
https://doi.org/10.1145/3544549.3582733
https://doi.org/10.1016/j.ergon.2019.102837
https://doi.org/10.1016/j.ergon.2019.102837
https://doi.org/10.3390/s18010208
https://doi.org/10.3390/s18010208
https://doi.org/10.1016/j.apergo.2017.07.012
https://doi.org/10.1007/978-3-030-32520-6_60
https://doi.org/10.1109/jsen.2018.2885323
https://doi.org/10.1109/jsen.2018.2885323
https://doi.org/10.1145/3316782.3316785
https://doi.org/10.1145/3316782.3316785
https://doi.org/10.1109/memea.2017.7985917
https://doi.org/10.1109/memea.2017.7985917
https://doi.org/10.1109/tim.2018.2795158
https://doi.org/10.1109/ihtc.2014.7147534
https://doi.org/10.1007/978-981-13-8303-8_31
https://doi.org/10.3182/20110828-6-it-1002.02987
https://doi.org/10.2316/p.2013.791-142
https://doi.org/10.1007/978-3-030-78224-5_37
https://doi.org/10.1007/978-3-030-78224-5_37


Sitting Posture Recognition and Feedback CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Systems (CHI EA). ACM, New York, NY, USA, 1–6. https://doi.org/10.1145/
3170427.3188562

[198] Jaemyung Shin, Bumsoo Kang, Taiwoo Park, Jina Huh, Jinhan Kim, and Junehwa
Song. 2016. BeUpright. In Proc. Human Factors in Computing Systems (CHI).
ACM, New York, NY, USA, 6040–6052. https://doi.org/10.1145/2858036.2858561

[199] Joon Gi Shin, Doheon Kim, Chaehan So, and Daniel Saakes. 2020. Body Follows
Eye: Unobtrusive Posture Manipulation Through a Dynamic Content Position
in Virtual Reality. In Proc. Human Factors in Computing Systems (CHI). ACM,
New York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376794

[200] Joon-Gi Shin, Eiji Onchi, Maria Jose Reyes, Junbong Song, Uichin Lee, Seung-Hee
Lee, and Daniel Saakes. 2019. Slow Robots for Unobtrusive Posture Correction.
In Proc. Human Factors in Computing Systems (CHI). ACM, New York, NY, USA,
1–10. https://doi.org/10.1145/3290605.3300843

[201] Sigurdur O. Sigurdsson and John Austin. 2008. Using real-time visual feedback
to improve posture at computer workstations. Journal of Applied Behavior
Analysis 41, 3 (Sept. 2008), 365–375. https://doi.org/10.1901/jaba.2008.41-365

[202] Sigurdur O. Sigurdsson, Brandon M. Ring, Mick Needham, James H. Boscoe,
and Kenneth Silverman. 2011. Generalization of posture training to computer
workstations in an applied setting. Journal of Applied Behavior Analysis 44, 1
(March 2011), 157–161. https://doi.org/10.1901/jaba.2011.44-157

[203] Vikas Kumar Sinha, Kiran Kumar Patro, Paweł Pławiak, and Allam Jaya Prakash.
2021. Smartphone-Based Human Sitting Behaviors Recognition Using Inertial
Sensor. Sensors 21, 19 (Oct. 2021), 6652. https://doi.org/10.3390/s21196652

[204] Sophie Skach, Rebecca Stewart, and Patrick G. T. Healey. 2018. Smart Arse.
In Proc. Int. Conf. Multimodal Interaction (ICMI). ACM, New York, NY, USA,
116–124. https://doi.org/10.1145/3242969.3242977

[205] Lynne A. Slivovsky and Hong Z. Tan. 2000. A Real-Time Static Posture
Classification System. In Proc. Int. Mechanical Engineering Congress and Ex-
position (IMECE, Vol. 2). ASME, New York, NY, USA, 1049–1056. https:
//doi.org/10.1115/imece2000-2411

[206] Iwan Aang Soenandi, Meriastuti Ginting, and Budi Harsono. 2019. Real Time
Floor Sitting Posture Monitoring using K-Means Clustering. In Proc. Int. Conf.
Software Engineering and Information Management (ICSIM). ACM, New York,
NY, USA, 194–198. https://doi.org/10.1145/3305160.3305209

[207] Farideh Soltani Nejad. 2018. SitLight: a Wearable Intervention for Improving
Sitting Behavior. https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149740

[208] Wu Song-Lin and Cui Rong-Yi. 2010. Human behavior recognition based on
sitting postures. In Proc. Symp. Computer, Communication, Control and Automa-
tion (3CA, Vol. 1). IEEE, New York, NY, USA, 138–141. https://doi.org/10.1109/
3ca.2010.5533871

[209] Jessica Speir. 2015. PostureChair: A Real-Time, As-Needed Feedback System for
Improving the Sitting Posture of Office Workers. Ph. D. Dissertation. Carleton
University. https://curve.carleton.ca/297e4d41-ae13-4740-bccb-5d21ca40265d

[210] Emmanuel Stamatakis, Ulf Ekelund, Ding Ding, Mark Hamer, Adrian E Bauman,
and I-Min Lee. 2018. Is the time right for quantitative public health guidelines
on sitting? A narrative review of sedentary behaviour research paradigms
and findings. British Journal of Sports Medicine 53, 6 (June 2018), 377–382.
https://doi.org/10.1136/bjsports-2018-099131

[211] Emmanuel Stamatakis, Joanne Gale, Adrian Bauman, Ulf Ekelund, Mark Hamer,
and Ding Ding. 2019. Sitting Time, Physical Activity, and Risk of Mortality
in Adults. Journal of the American College of Cardiology 73, 16 (April 2019),
2062–2072. https://doi.org/10.1016/j.jacc.2019.02.031 SPECIAL FOCUS ISSUE:
CARDIOVASCULAR HEALTH PROMOTION.

[212] Evropi Stefanidi, Marit Bentvelzen, PawełW.Woźniak, Thomas Kosch, Mikołaj P.
Woźniak, Thomas Mildner, Stefan Schneegass, Heiko Müller, and Jasmin Niess.
2023. Literature Reviews in HCI: A Review of Reviews. In Proc. Human Factors
in Computing Systems (CHI). ACM, Hamburg Germany, 1–24. https://doi.org/
10.1145/3544548.3581332

[213] Aoife Stephenson, Suzanne M. McDonough, Marie H. Murphy, Chris D. Nugent,
and Jacqueline L. Mair. 2017. Using computer, mobile and wearable technology
enhanced interventions to reduce sedentary behaviour: a systematic review
and meta-analysis. International Journal of Behavioral Nutrition and Physical
Activity 14, 1 (Aug. 2017), 105. https://doi.org/10.1186/s12966-017-0561-4

[214] Heng Sun, Guo an Zhu, Xu Cui, and Jin-Xiang Wang. 2021. Kinect-based
intelligent monitoring and warning of students sitting posture. In Proc. Conf.
Automation, Control and Robotics Engineering (CACRE). IEEE, New York, NY,
USA, 338–342. https://doi.org/10.1109/cacre52464.2021.9501372

[215] Wanting Sun, Ze Zhou, and Hongjun Li. 2019. Sitting Posture Recognition in
Real-Time Combined with Index Map and BLS. In Proc. Int. Conf. Innovation
in Artificial Intelligence (ICIAI). ACM, New York, NY, USA, 101–105. https:
//doi.org/10.1145/3319921.3319955

[216] Shunsuke Suzuki, Mineichi Kudo, and Atsuyoshi Nakamura. 2016. Sitting
posture diagnosis using a pressure sensor mat. In Proc. Identity, Security and
Behavior Analysis (ISBA). IEEE, New York, NY, USA, 1–6. https://doi.org/10.
1109/isba.2016.7477236

[217] Elżbieta Szczygieł, Katarzyna Zielonka, Sylwia Mętel, and Joanna Golec. 2017.
Musculo-skeletal and pulmonary effects of sitting position – a systematic review.
Annals of Agricultural and Environmental Medicine 24, 1 (March 2017), 8–12.

https://doi.org/10.5604/12321966.1227647
[218] Somayeh Tahernejad, Alireza Choobineh, Mohsen Razeghi, Mohammad Abdoli-

Eramaki, Hossein Parsaei, Hadi Daneshmandi, and Mozhgan Seif. 2021. In-
vestigation of office workers’ sitting behaviors in an ergonomically adjusted
workstation. International Journal of Occupational Safety and Ergonomics 28, 4
(Nov. 2021), 2346–2354. https://doi.org/10.1080/10803548.2021.1990581

[219] Meirav Taieb-Maimon, Julie Cwikel, Bracha Shapira, and Ido Orenstein. 2012.
The effectiveness of a training method using self-modeling webcam photos for
reducing musculoskeletal risk among office workers using computers. Applied
Ergonomics 43, 2 (March 2012), 376–385. https://doi.org/10.1016/j.apergo.2011.
05.015 Special Section on Product Comfort.

[220] Takahiro Takeda. 2019. Posture Estimation Method Using Cushion Type Seat
Pressure Sensor. In Proc. Int. Conf. Machine Learning and Cybernetics (ICMLC).
IEEE, New York, NY, USA, 1–6. https://doi.org/10.1109/icmlc48188.2019.8949190

[221] H.Z. Tan, L.A. Slivovsky, and A. Pentland. 2001. A sensing chair using pressure
distribution sensors. IEEE/ASME Transactions on Mechatronics 6, 3 (2001), 261–
268. https://doi.org/10.1109/3516.951364

[222] Hong Z Tan. 1999. A sensing chair. In Proc. Int. Mechanical Engineering Congress
and Exposition (IMECE, Vol. 16349). ASME, New York, NY, USA, 313–317. https:
//engineering.purdue.edu/~hongtan/pubs/Index.html

[223] Hao-Yuan Tang, Shih-Hua Tan, Ting-Yu Su, Chang-Jung Chiang, and Hsiang-
Ho Chen. 2021. Upper Body Posture Recognition Using Inertial Sensors and
Recurrent Neural Networks. Applied Sciences 11, 24 (Dec. 2021), 12101. https:
//doi.org/10.3390/app112412101

[224] Catia Tavares, Joao Oliveira E. Silva, Andre Mendes, Leonor Rebolo, Maria
De Fatima Domingues, Nelia Alberto, Mario Lima, Hugo Placido Silva, and
Paulo Fernando Da Costa Antunes. 2022. Instrumented Office Chair With Low-
Cost Plastic Optical Fiber Sensors for Posture Control and Work Conditions
Optimization. IEEE Access 10 (2022), 69063–69071. https://doi.org/10.1109/
access.2022.3185624

[225] Brett Taylor, Max Birk, Regan L. Mandryk, and Zenja Ivkovic. 2013. Posture
training with real-time visual feedback. In Extended Abstracts Human Factors
in Computing Systems (CHI EA). ACM, New York, NY, USA, 3135–3138. https:
//doi.org/10.1145/2468356.2479629

[226] B. Tessendorf, B. Arnrich, J. Schumm, C. Setz, and G. Troster. 2009. Unsupervised
monitoring of sitting behavior. In Proc. Engineering in Medicine and Biology
Society (EMBC). IEEE, New York, NY, USA, 6197–6200. https://doi.org/10.1109/
iembs.2009.5334620

[227] Ferdews Tlili, Rim Haddad, Ridha Bouallegue, and Raed Shubair. 2022. Design
and architecture of smart belt for real time posture monitoring. Internet of
Things 17 (March 2022), 100472. https://doi.org/10.1016/j.iot.2021.100472

[228] Ferdews Tlili, Rim Haddad, Ridha Bouallegue, and Raed Shubair. 2022. Ma-
chine Learning Algorithms Application For The Proposed Sitting Posture
Monitoring System. Procedia Computer Science 203 (2022), 239–246. https:
//doi.org/10.1016/j.procs.2022.07.031 17th International Conf. on Future Net-
works and Communications / 19th International Conf. on Mobile Systems and
Pervasive Computing / 12th International Conf. on Sustainable Energy Informa-
tion Technology (FNC/MobiSPC/SEIT 2022), August 9-11, 2022, Niagara Falls,
Ontario, Canada.

[229] Ferdews Tlili, Rim Haddad, Youssef Ouakrim, Ridha Bouallegue, and Neila
Mezghani. 2018. A Review on posture monitoring systems. In Proc. Smart
Communications and Networking (SmartNets). IEEE, New York, NY, USA, 1–6.
https://doi.org/10.1109/smartnets.2018.8707392

[230] Mark S. Tremblay, Salomé Aubert, Joel D. Barnes, Travis J. Saunders, Valerie
Carson, Amy E. Latimer-Cheung, Sebastien F.M. Chastin, Teatske M. Altenburg,
et al. 2017. Sedentary Behavior Research Network (SBRN) – Terminology
Consensus Project process and outcome. International Journal of Behavioral
Nutrition and Physical Activity 14, 1 (10 June 2017), 75. https://doi.org/10.1186/
s12966-017-0525-8

[231] Marc van Almkerk, Bart L. Bierling, Nono Leermakers, Jeroen Vinken, and An-
nick A.A. Timmermans. 2015. Improving posture and sitting behavior through
tactile and visual feedback in a sedentary environment. In Proc. Engineering
in Medicine and Biology Society (EMBC). IEEE, New York, NY, USA, 4570–4573.
https://doi.org/10.1109/embc.2015.7319411

[232] LHM van der Doelen, MP Netten, and RHM Goossens. 2011. Tactile feedback to
influence sitting behavior during office work. In Proc. Wellbeing and Innovations
Through Economics (NES). Nordic Ergonomics Society, Nordic countries, 380–
385. https://research.tudelft.nl/en/publications/tactile-feedback-to-influence-
sitting-behavior-during-office-work

[233] Margarita Vergara and Álvaro Page. 2000. System to measure the use of the
backrest in sitting-posture office tasks. Applied Ergonomics 31, 3 (June 2000),
247–254. https://doi.org/10.1016/s0003-6870(99)00056-3

[234] Srijan Verma, Nandha Kumar Thulasiraman, and Andy Chan Tak Yee. 2021.
FPGA Based Real Time Back Posture Correction Device. In Proc. Student Conf.
Research and Development (SCOReD). IEEE, New York, NY, USA, 108–112. https:
//doi.org/10.1109/scored53546.2021.9652776

https://doi.org/10.1145/3170427.3188562
https://doi.org/10.1145/3170427.3188562
https://doi.org/10.1145/2858036.2858561
https://doi.org/10.1145/3313831.3376794
https://doi.org/10.1145/3290605.3300843
https://doi.org/10.1901/jaba.2008.41-365
https://doi.org/10.1901/jaba.2011.44-157
https://doi.org/10.3390/s21196652
https://doi.org/10.1145/3242969.3242977
https://doi.org/10.1115/imece2000-2411
https://doi.org/10.1115/imece2000-2411
https://doi.org/10.1145/3305160.3305209
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149740
https://doi.org/10.1109/3ca.2010.5533871
https://doi.org/10.1109/3ca.2010.5533871
https://curve.carleton.ca/297e4d41-ae13-4740-bccb-5d21ca40265d
https://doi.org/10.1136/bjsports-2018-099131
https://doi.org/10.1016/j.jacc.2019.02.031
https://doi.org/10.1145/3544548.3581332
https://doi.org/10.1145/3544548.3581332
https://doi.org/10.1186/s12966-017-0561-4
https://doi.org/10.1109/cacre52464.2021.9501372
https://doi.org/10.1145/3319921.3319955
https://doi.org/10.1145/3319921.3319955
https://doi.org/10.1109/isba.2016.7477236
https://doi.org/10.1109/isba.2016.7477236
https://doi.org/10.5604/12321966.1227647
https://doi.org/10.1080/10803548.2021.1990581
https://doi.org/10.1016/j.apergo.2011.05.015
https://doi.org/10.1016/j.apergo.2011.05.015
https://doi.org/10.1109/icmlc48188.2019.8949190
https://doi.org/10.1109/3516.951364
https://engineering.purdue.edu/~hongtan/pubs/Index.html
https://engineering.purdue.edu/~hongtan/pubs/Index.html
https://doi.org/10.3390/app112412101
https://doi.org/10.3390/app112412101
https://doi.org/10.1109/access.2022.3185624
https://doi.org/10.1109/access.2022.3185624
https://doi.org/10.1145/2468356.2479629
https://doi.org/10.1145/2468356.2479629
https://doi.org/10.1109/iembs.2009.5334620
https://doi.org/10.1109/iembs.2009.5334620
https://doi.org/10.1016/j.iot.2021.100472
https://doi.org/10.1016/j.procs.2022.07.031
https://doi.org/10.1016/j.procs.2022.07.031
https://doi.org/10.1109/smartnets.2018.8707392
https://doi.org/10.1186/s12966-017-0525-8
https://doi.org/10.1186/s12966-017-0525-8
https://doi.org/10.1109/embc.2015.7319411
https://research.tudelft.nl/en/publications/tactile-feedback-to-influence-sitting-behavior-during-office-work
https://research.tudelft.nl/en/publications/tactile-feedback-to-influence-sitting-behavior-during-office-work
https://doi.org/10.1016/s0003-6870(99)00056-3
https://doi.org/10.1109/scored53546.2021.9652776
https://doi.org/10.1109/scored53546.2021.9652776


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Krauter et al.

[235] Alexandra Voit, Sven Mayer, Valentin Schwind, and Niels Henze. 2019. Online,
VR, AR, Lab, and In-Situ: Comparison of Research Methods to Evaluate Smart
Artifacts. In Proc. Human Factors in Computing Systems (CHI). ACM, Glasgow
Scotland Uk, 1–12. https://doi.org/10.1145/3290605.3300737

[236] Qilong Wan, Haiming Zhao, Jie Li, and Peng Xu. 2021. Hip Positioning and
Sitting Posture Recognition Based on Human Sitting Pressure Image. Sensors
21, 2 (Jan. 2021), 426. https://doi.org/10.3390/s21020426

[237] Changwon Wang, Young Kim, and Se Dong Min. 2017. A Preliminary Study on
Implementation of Sitting Posture Analysis System Using a Conductive Textile.
Advanced Science Letters 23, 10 (Oct. 2017), 10399–10403. https://doi.org/10.
1166/asl.2017.10461

[238] Jianquan Wang, Basim Hafidh, Haiwei Dong, and Abdulmotaleb El Saddik. 2021.
Sitting Posture Recognition Using a Spiking Neural Network. IEEE Sensors
Journal 21, 2 (Jan. 2021), 1779–1786. https://doi.org/10.1109/JSEN.2020.3016611

[239] Q. Wang, W. Chen, A.A.A. Timmermans, C. Karachristos, J.B. Martens, and P.
Markopoulos. 2015. Smart Rehabilitation Garment for posture monitoring. In
Proc. Engineering in Medicine and Biology Society (EMBC). IEEE, New York, NY,
USA, 5736–5739. https://doi.org/10.1109/embc.2015.7319695

[240] Stephen Wang and Di Yu. 2013. Virtual-spine: The Collaboration Between
Pervasive Environment Based Simulator, Game Engine (Mixed-Reality) and
Pervasive Messaging. In Proc. Pervasive Computing Technologies for Healthcare
(PERVASIVEHEALTH). IEEE, New York, NY, USA, 45–48. https://doi.org/10.
4108/icst.pervasivehealth.2013.252108

[241] Stephen Jia Wang, Björn Sommer, Wenlong Cheng, and Falk Schreiber. 2018.
The Virtual-Spine Platform—Acquiring, visualizing, and analyzing individual
sitting behavior. PLOS ONE 13, 6 (June 2018), 1–26. https://doi.org/10.1371/
journal.pone.0195670

[242] Yunlong Wang and Harald Reiterer. 2019. The Point-of-Choice Prompt or the
Always-On Progress Bar?. In Extended Abstracts Human Factors in Computing
Systems (CHI EA). ACM, New York, NY, USA, 1–6. https://doi.org/10.1145/
3290607.3313050

[243] Pooriput Waongenngarm, Bala S. Rajaratnam, and Prawit Janwantanakul. 2015.
Perceived body discomfort and trunk muscle activity in three prolonged sitting
postures. Journal of Physical Therapy Science 27, 7 (2015), 2183–2187. https:
//doi.org/10.1589/jpts.27.2183

[244] Christopher D Wickens. 1980. The structure of attentional resources. Vol. 8.
Lawrence Erlbaum Associates, Mahwah, New Jersey, USA, Chapter 12, 239–
257.

[245] Matthias Wölfel. 2017. Acceptance of dynamic feedback to poor sitting habits
by anthropomorphic objects. In Proc. Pervasive Computing Technologies for
Healthcare (PervasiveHealth). ACM, New York, NY, USA, 307–314. https://doi.
org/10.1145/3154862.3154928

[246] Arnold Y.L. Wong, Tommy P.M. Chan, Alex W.M. Chau, Hon Tung Cheung,
Keith C.K. Kwan, Alan K.H. Lam, Peter Y.C. Wong, and Diana De Carvalho.
2019. Do different sitting postures affect spinal biomechanics of asymptomatic
individuals? Gait & Posture 67 (Jan. 2019), 230–235. https://doi.org/10.1016/j.
gaitpost.2018.10.028

[247] Bang Wong. 2011. Points of View: Color Blindness. Nature Methods 8, 6 (June
2011), 441–441. https://doi.org/10.1038/nmeth.1618

[248] Wai Yin Wong and Man Sang Wong. 2008. Detecting spinal posture change in
sitting positions with tri-axial accelerometers. Gait & Posture 27, 1 (Jan. 2008),
168–171. https://doi.org/10.1016/j.gaitpost.2007.03.001

[249] Wai Yin Wong and Man Sang Wong. 2008. Smart garment for trunk posture
monitoring: A preliminary study. Scoliosis 3, 1 (20 May 2008), 7. https://doi.
org/10.1186/1748-7161-3-7

[250] Bing-Fei Wu, Chien-Chou Lin, and Po-Wei Huang. 2021. PoseX: A Webcam-
based Detection System to Prevent Postural Syndromes for Computer Users. In
Proc. Conf. Biomedical Engineering and Sciences (IECBES). IEEE, New York, NY,
USA, 109–114. https://doi.org/10.1109/iecbes48179.2021.9398773

[251] Chi-Chih Wu, Chuang-Chien Chiu, and Chun-Yu Yeh. 2019. Development of
wearable posture monitoring system for dynamic assessment of sitting posture.
Physical and Engineering Sciences in Medicine 43, 1 (01 Dec. 2019), 187–203.
https://doi.org/10.1007/s13246-019-00836-4

[252] Jun Wu, Jian Liu, Xiuyuan Li, Lingbo Yan, Libo Cao, and Haiyang Zhang. 2022.
Recognition and prediction of driver’s whole body posture model. Proc. of the
Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
236, 14 (Jan. 2022), 3326–3343. https://doi.org/10.1177/09544070211068676

[253] Yu-Chian Wu, Te-Yen Wu, Paul Taele, Bryan Wang, Jun-You Liu, Pin sung Ku,
Po-En Lai, and Mike Y. Chen. 2018. ActiveErgo. In Proc. Human Factors in
Computing Systems (CHI). ACM, New York, NY, USA, 1–8. https://doi.org/10.
1145/3173574.3174132

[254] Lishuang Xu, Gang Chen, Jiajun Wang, Ruimin Shen, and Shen Zhao. 2012. A
sensing cushion using simple pressure distribution sensors. In Proc. Multisensor
Fusion and Integration for Intelligent Systems (MFI). IEEE, New York, NY, USA,
451–456. https://doi.org/10.1109/mfi.2012.6343048

[255] Wenyao Xu, Ming-Chun Huang, Navid Amini, Lei He, and Majid Sarrafzadeh.
2013. eCushion: A Textile Pressure Sensor Array Design and Calibration for
Sitting Posture Analysis. IEEE Sensors Journal 13, 10 (Oct. 2013), 3926–3934.

https://doi.org/10.1109/jsen.2013.2259589
[256] Wenyao Xu, Zhinan Li, Ming-Chun Huang, Navid Amini, and Majid Sarrafzadeh.

2011. eCushion: An eTextile Device for Sitting Posture Monitoring. In Proc. Body
Sensor Networks (BSN). IEEE, New York, NY, USA, 194–199. https://doi.org/10.
1109/bsn.2011.24

[257] Leiyue Yao, Weidong Min, and Hao Cui. 2017. A New Kinect Approach to
Judge Unhealthy Sitting Posture Based on Neck Angle and Torso Angle. In
Proc. Int. Conf. Image and Graphics (ICIG). Springer Nature, Cham, 340–350.
https://doi.org/10.1007/978-3-319-71607-7_30

[258] Won-gyu Yoo, Chung-hwi Yi, and Min-hee Kim. 2006. Effects of a Proximity-
Sensing Feedback Chair on Head, Shoulder, and Trunk Postures When Working
at a Visual Display Terminal. Journal of Occupational Rehabilitation 16, 4 (Nov.
2006), 631–637. https://doi.org/10.1007/s10926-006-9059-7

[259] Eunjeong Yu, Kwangsu Moon, Shezeen Oah, and Yohaeng Lee. 2013. An Evalu-
ation of the Effectiveness of an Automated Observation and Feedback System
on Safe Sitting Postures. Journal of Organizational Behavior Management 33, 2
(June 2013), 104–127. https://doi.org/10.1080/01608061.2013.785873

[260] Liangqi Yuan and Jia Li. 2021. Smart Cushion Based on Pressure Sensor Array
for Human Sitting Posture Recognition. In Proc. SENSORS. IEEE, New York, NY,
USA, 1–4. https://doi.org/10.1109/sensors47087.2021.9639463

[261] Roland Zemp, Matteo Tanadini, Stefan Plüss, Karin Schnüriger, Navrag B. Singh,
William R. Taylor, and Silvio Lorenzetti. 2016. Application of Machine Learning
Approaches for Classifying Sitting Posture Based on Force and Acceleration
Sensors. BioMed Research International 2016 (27 Oct. 2016), 1–9. https://doi.
org/10.1155/2016/5978489

[262] Ying Zheng and John B. Morrell. 2010. A vibrotactile feedback approach to
posture guidance. In Proc. Haptics Symp. (HAPTICS). IEEE, New York, NY, USA,
351–358. https://doi.org/10.1109/haptic.2010.5444633

[263] Ying Zheng and John B. Morrell. 2013. Comparison of Visual and Vibrotactile
Feedback Methods for Seated Posture Guidance. IEEE Transactions on Haptics 6,
1 (2013), 13–23. https://doi.org/10.1109/toh.2012.3

[264] Ying (Jean) Zheng and John B. Morrell. 2010. Cognitive Load Assessment of a
Vibrotactile Posture Feedback Chair. Proc. of the Human Factors and Ergonomics
Society Annual Meeting 54, 15 (Sept. 2010), 1214–1218. https://doi.org/10.1177/
154193121005401527

[265] Manli Zhu, Aleix M. Martinez, and Hong Z. Tan. 2003. Template-based Recog-
nition of Static Sitting Postures. In Conf. Computer Vision and Pattern Recog-
nition Workshop (CVPRW, Vol. 5). IEEE, New York, NY, USA, 50–50. https:
//doi.org/10.1109/cvprw.2003.10049

[266] Yunying Zhu, Shaoke Qiu, Min Li, Gengshu Chen, Xinyao Hu, Chengxiang
Liu, and Xingda Qu. 2019. A Smart Portable Mat That Can Meausre Sitting
Plantar Pressure Distributionwith a High Resolution. In Proc. Int. Conf. Industrial
Engineering and Applications (ICIEA). IEEE, New York, NY, USA, 141–144. https:
//doi.org/10.1109/iea.2019.8714871

[267] Gizem Özgül and Fatma Patlar Akbulut. 2022. Wearable sensor device for
posture monitoring and analysis during daily activities: A preliminary study.
International Advanced Researches and Engineering Journal 6, 1 (April 2022),
43–48. https://doi.org/10.35860/iarej.1018977

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://doi.org/10.1145/3290605.3300737
https://doi.org/10.3390/s21020426
https://doi.org/10.1166/asl.2017.10461
https://doi.org/10.1166/asl.2017.10461
https://doi.org/10.1109/JSEN.2020.3016611
https://doi.org/10.1109/embc.2015.7319695
https://doi.org/10.4108/icst.pervasivehealth.2013.252108
https://doi.org/10.4108/icst.pervasivehealth.2013.252108
https://doi.org/10.1371/journal.pone.0195670
https://doi.org/10.1371/journal.pone.0195670
https://doi.org/10.1145/3290607.3313050
https://doi.org/10.1145/3290607.3313050
https://doi.org/10.1589/jpts.27.2183
https://doi.org/10.1589/jpts.27.2183
https://doi.org/10.1145/3154862.3154928
https://doi.org/10.1145/3154862.3154928
https://doi.org/10.1016/j.gaitpost.2018.10.028
https://doi.org/10.1016/j.gaitpost.2018.10.028
https://doi.org/10.1038/nmeth.1618
https://doi.org/10.1016/j.gaitpost.2007.03.001
https://doi.org/10.1186/1748-7161-3-7
https://doi.org/10.1186/1748-7161-3-7
https://doi.org/10.1109/iecbes48179.2021.9398773
https://doi.org/10.1007/s13246-019-00836-4
https://doi.org/10.1177/09544070211068676
https://doi.org/10.1145/3173574.3174132
https://doi.org/10.1145/3173574.3174132
https://doi.org/10.1109/mfi.2012.6343048
https://doi.org/10.1109/jsen.2013.2259589
https://doi.org/10.1109/bsn.2011.24
https://doi.org/10.1109/bsn.2011.24
https://doi.org/10.1007/978-3-319-71607-7_30
https://doi.org/10.1007/s10926-006-9059-7
https://doi.org/10.1080/01608061.2013.785873
https://doi.org/10.1109/sensors47087.2021.9639463
https://doi.org/10.1155/2016/5978489
https://doi.org/10.1155/2016/5978489
https://doi.org/10.1109/haptic.2010.5444633
https://doi.org/10.1109/toh.2012.3
https://doi.org/10.1177/154193121005401527
https://doi.org/10.1177/154193121005401527
https://doi.org/10.1109/cvprw.2003.10049
https://doi.org/10.1109/cvprw.2003.10049
https://doi.org/10.1109/iea.2019.8714871
https://doi.org/10.1109/iea.2019.8714871
https://doi.org/10.35860/iarej.1018977

	Abstract
	1 Introduction
	3 Sitting Posture Recognition
	3.1 Pressure Sensors
	3.2 Motion Sensors
	3.3 Vision-Based
	3.4 Distance Sensors
	3.5 Deformation Sensors
	3.6 Other
	3.7 Combination of Sensor Types

	4 Sitting Posture Feedback
	4.1 Visual Feedback

	5 Discussion
	5.1 Sitting Posture Recognition
	5.2 Sitting Posture Feedback
	5.3 Limitations

	6 Conclusion
	Acknowledgments
	References



