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Figure 1: Picture of our system acting as an active smart assistant interacting with a user.

ABSTRACT

Passive voice assistants such as Alexa are widespread, responding
to user requests. However, due to the rise of domestic robots, we
envision active smart assistants initiating interactions seamlessly,
weaving themselves into the user’s context, and enabling more
suitable interaction. While robots already deliver the hardware, only
recently have the advancements in artificial intelligence enabled
assistants to grasp the human and the environments to support
such visions. We combined hardware with artificial intelligence to
build an attentive robot. Here, we present a robotic head prototype
discovering and following the users in a room supported by video
and sound. We contribute (1) the design and implementation of a
prototype system for an active smart assistant and (2) a discussion
on design principles for systems engaging in human conversations.
This work aims to provide foundations for future research for active
smart assistants.
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« Human-centered computing — Human computer interac-
tion (HCI); Interaction design.
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1 INTRODUCTION

Currently, the interaction with smart assistants starts through user
interactions. However, as domestic robots like vacuum cleaners
become more prevalent, proactive engagement can enhance user
experience. For instance, a vacuum cleaner could autonomously
inquire about an ideal cleaning time, relieving users from explicit
routine setups. Prior work has already investigated robots initiat-
ing interactions with users through eye contact [9, 27], human-like
approaching behavior [8, 12, 26], or verbally [19]. Shi et al. [28]
propose a model for constraints and expected behavior for hu-
manoid robots initiating conversations. One challenge is to reliably
detect the current user state and position to understand when and
how these systems can approach users. While recent advancements
allow reliable detection of objects [25], humans [14, 18, 22], and
actions [3], there is a need to derive various human states for opti-
mal system-user interaction moments. Humans excel at intuitively
assessing suitable times for questions, unlike current device notifi-
cations that often disrupt users.

We propose a more human-like, implicit communication ap-
proach for requests to address this. In contrast to machines, hu-
mans can also include not observable factors to determine user
states, e.g., interpersonal connections. On the other hand, machines
need to rely on only observable factors. Thus, we explore possible
observable human states and how systems can approach users in
these different states.
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In this work, we showcase an initial implementation of a future
active smart assistant, see Figure 1. Related work shows that future
smart systems can come in different designs and interaction possi-
bilities [5, 7]. While such design designs are vast and can impact
the perception and expectation of that system, the basic concept
of an actively engaging system stays the same. Thus, we build a
prototype system, considering both the needed functionality and
the ability to communicate the robot’s intent. In this initial work,
we developed and showcased a more limited static robot using a
pan-tilt unit (PTU), focusing on the essential aspects. The robot
is equipped with a depth camera, a 4-channel microphone, stereo
speakers, and a display showing an animated face. To derive the hu-
man position we chose to combine audio [4, 10, 15] and visual [18]
channels for the best performance [6, 16]. With this, we developed
a voice user interface circle and conversational logic for verbal
interaction between the assistant and the human.

2 DESIGN CONSIDERATIONS

Initiating conversations between humans includes multiple steps
and ways how this can occur [23], e.g., becoming physically cop-
resent, greeting both audible or visible, touching, or introducing
oneself. While humans are generally good at understanding these
initiations [32], we currently do not know which concepts are simi-
lar or different to human-human interaction when adapting these
ideas to human-robot interaction. In the following, we describe our
considerations about the user state, how the system can initiate
conversations, and how we envision interaction.

Observable User State. Humans can easily infer other humans’
current state from many different information sources [21, 30].
This information can either be observable (facial expression, body
language, or eye contact) or non-observable (personal experiences,
stress level, or beliefs and values). From this observable and non-
observable information, we adapt the way we approach others. In
contrast to humans, machines need to rely on observable factors
only to derive the current human state [13], which has already been
done for smart home devices to improve user experience [31]. As
a first step, we propose that observable factors are the number of
people in the room, location of people, ongoing conversations or
silence, and people entering and leaving the room [11]. Furthermore,
the system should observe gaze direction [9] and the activity each
person is doing [31]. The system can build knowledge about people
by asking questions and recognizing people over time. Ultimately,
the system can decide when and how to initiate conversations by
taking these factors into account.

Robot Initiation. The system can initiate conversations based on
observed human states using either verbal, non-verbal, or combined
communication approaches. Verbal communication provides direct
and fast information transfer. Non-verbal cues, delivered through
moving expressions and facial cues, offer non-intrusive initiation,
allowing users to choose whether they want to respond. Supporting
verbal through non-verbal elements can enhance user comfort [29].
Deciding when and how often the system retries initiation after
being ignored is a crucial consideration. Context, particularly the
urgency of information, influences the approach, distinguishing
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between time-sensitive notifications and inquiries aimed at enhanc-
ing future interactions. Furthermore, the system chooses one target
person, which should be approached [26].

Envisioned Interaction. We envision that an active smart assistant
should precisely detect the position of people in the room and know
for each person if it has seen them before and what information
it already has about that person. The system should then be able
to initiate conversations based on information it wants to give to
users or needs from users. During conversations, the system should
understand the user. Later, such systems could also be connected
to other smart home devices to be able to gather information about
and control the environment.

3 IMPLEMENTATION

We designed, constructed, and implemented an active smart as-
sistant, see Figure 1. The system utilizes a Schunk PTU to enable
horizontal and vertical rotation. The system features an 8” dis-
play for show a face via an HTML webpage, a Seed ReSpeaker
4-channel microphone, stereo speakers, and a Realsense D455 cam-
era controlled by a Jetson Nano running Ubuntu 20.04 and ROS for
communication. Additionally, we 3D printed a body for the system.
We provide the STL files, part list, and build instructions via OSF!.

We estimated the Direction of Arrival (DOA) of the audio signal
using the onboard predefined DOA estimation of the ReSpeaker,
which is based on GCC-Phat [4, 15]. We integrated mediapipe’s pose
detection and face mesh [18] along with voice activity detection [10]
to determine user locations in the room. We fused the position of
detected faces with detected bodies through Euclidean distance
matching and took the midpoint between the shoulder landmarks
as the position for each person.

The system utilizes facial expressions, including pupil move-
ment, panning towards users, animated talking mouth, and natu-
ralistic blinking. It can freely turn around to search for conversa-
tion partners or lock onto a specific person during conversation
mode, following their movements. The system detects unknown
people using face recognition [14]. We employ verbal interaction
capabilities through speech-to-text using OpenAl Whisper [24]
and text-to-speech using Nvidia Riva®. The dialogue management
system employs a state machine, and we extract the users’ intent
through joint intent classification and slot tagging [2].

4 LIMITATIONS AND FUTURE WORK

Recent advancements in small-scale computing have progressed
to levels where an Nvidia Jetson Nano can handle basic machine
learning models, but they still face limitations with larger models
necessitating additional computing power. One main challenge of
our implementation is detecting speaker direction from audio-only
when not all users are in the field of view of the camera. Due to noise
and other audio sources at the same time, our system occasionally
misdirects toward the non-dialogue audio source. While we can
fix this through different interaction concepts, and the behavior
of the system turning towards sounds that are not voices can also
appear natural, it can still lead to interaction challenges. With our
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work, future work can now look into how people actually like
to interact with an active smart assistant. We propose to study
different initiation methods from the robot in different user states.
Finally, we propose that interaction can be improved even further by
including even more world information through additional sensors.

We designed a dialog management system using a simple state
machine. The active smart system determines the progression of
the dialog to the next step by assessing the understanding of the
human response. Future work can enhance this interaction by in-
corporating additional factors, e.g., knowledge about the humans’
and robots’ uncertainty, to create a more natural conversation [17].

Our prototype used a smart assistant as a foundation and in-
tegrated robotic features via the PTU. This allows the system to
rotate and pan towards users with a displayed face, which has been
shown to enhance users’ perception of the system [1, 20]. Future
enhancements may include additional robotic elements, such as a
body, arms, or hands, to further embody the system [33].

5 CONCLUSION

In this work, we present an active smart assistant. We build a
robotic head that can turn towards detected humans and sense
speaker directions. This system can then automatically initiate
conversations with users and understand the user’s intent. We
designed the first version of a conversational logic unit for the
system to decide when to initiate conversations. Furthermore, we
discuss our design considerations to understand and act according
to the current user state. With this work, we propose a groundwork
for future research to investigate what interaction with active smart
assistants can look like.
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