
An Investigation of How Software Developers Read Machine
Learning Code

Thomas Weber
LMU Munich

Munich, Germany
thomas.weber@ifi.lmu.de

Christina Winiker
LMU Munich

Munich, Germany
christina.winiker@stud.ifi.lmu.de

Sven Mayer
LMU Munich

Munich, Germany
info@sven-mayer.com

Abstract
BackgroundMachine Learning plays an ever-growing role in ev-
eryday software. This means a paradigmatic shift in how software
operators from algorithm-centered software where the develop-
ers defines the functionality to data-driven development where
behavior is inferred from data.

Aims The goal of our research is to determine how this paradig-
matic shift materializes in the written code and whether developers
are aware of these changes and how they affect their behavior.

Method To this end, we perform static analysis of 3,515 software
repositories to determine structural differences in the code. Follow-
ing this, we conducted a user study using eye tracking (N=18) to
determine how the code reading of developers differs when reading
Machine Learning source code versus traditional code.

Results The results show that there are structural differences
in the code of this paradigmatically different software. Develop-
ers appear to adapt their mental models with growing experience
resulting in distinctly different reading patterns.

Conclusions These difference highlight that we cannot treat all
code the same but require paradigm-specific, empirically validated
support mechanisms to help developers write high-quality code .

CCS Concepts
• Software and its engineering → Software creation and man-
agement; • Computing methodologies → Machine learning; •
Human-centered computing→ Empirical studies in HCI.

Keywords
software developers, eye tracking, code reading, human computer
interaction

ACM Reference Format:
Thomas Weber, Christina Winiker, and Sven Mayer. 2024. An Investigation
of How Software Developers Read Machine Learning Code. In Proceedings
of the 18th ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM ’24), October 24–25, 2024, Barcelona,
Spain. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3674805.
3686678

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEM ’24, October 24–25, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1047-6/24/10
https://doi.org/10.1145/3674805.3686678

1 Introduction
Nowadays, researchers and practitioners develop Machine Learn-
ing for many different domains. HereIt enables us to develop more
effective systems or even some functionality that was not possible
before, e.g., in medicine [41], disaster management [31], and the
automotive industry [29]. This growing interest naturally means
that these domains increasingly depend on the quality of these data-
driven software systems. Therefore, developers are increasingly
responsible for delivering high-quality, reliable software regardless
of complexity. However, by using Machine Learning, programming
is shifting from explicitly defining machine instructions to provid-
ing the appropriate data, context, and infrastructure for themachine
to learn. A program’s desired behavior is then not primarily defined
by instructions in code but implicitly encoded in the data or, for
example, in the weights and biases of a Neural Network. This can
be extremely challenging to understand for humans. Furthermore,
the code that developers do write themselves becomes increasingly
abstract. Karpathy [23] also refers to software based on Machine
Learning and Neural Networks as “Software 2.0” to denote this
fundamental shift in development practice. While the technological
differences between the traditional “Software 1.0” and “Software 2.0”
are well understood [4], it is not fully clear how this paradigmatic
shift changes the work of developers. To support developers of data-
driven applications, we must first understand the different aspects
of the developers’ behavior and how development has changed.

For traditional development, decades of research exist in soft-
ware Engineering [54], which has yielded processes, best practices,
and tools [19, 55] that have proven themselves in practice, giving
us a firm understanding of the developers’ behavior. “Software
2.0” and data-driven development still need to transition from data
science to data-driven engineering [3, 18], and a human-centered un-
derstanding of the difference can help with this. Furthermore, given
that current tools and programming languages for data-driven de-
velopment have either adapted or emerged from their traditional
counterpart, the obvious question is how much the underlying be-
havior differs andwhether we can build on existing knowledge from
Software Engineering research. Therefore, we must first determine
how far these development paradigms deviate from each other and
how these differences can impact the developers behavior.

In this paper specifically, we focus on how software developers
read code in this context. Prior work has, so far, investigated code
reading behavior for traditional code, e.g., [10, 39, 44]. In this work,
we go beyond this related work and compare the reading behavior
for traditional code with that for code that implements Machine
Learning models. To this end, we first perform static analysis on
publicly available code repositories that contain traditional and
machine learning code. Motivated by the structural differences this

https://orcid.org/0000-0002-6894-605X
https://orcid.org/0000-0001-6527-1846
https://orcid.org/0000-0001-5462-8782
https://doi.org/10.1145/3674805.3686678
https://doi.org/10.1145/3674805.3686678
https://doi.org/10.1145/3674805.3686678

ESEM ’24, October 24–25, 2024, Barcelona, Spain Weber et al.

showed, we investigate whether these differences have an impact
on the reading behavior of developers. We utilize eye tracking to
record the developers’ gaze to investigate the following questions:

RQ1What structures in the code are of interest to developers
in Machine Learning code compared to code that does not use
Machine Learning?

We expand on the existing literature by including data science
experts in the experiments’ sample, which should be more repre-
sentative and yield more valuable insights. Additionally, testing
both novices and experts allows us to compare these target groups
to determine the effect of prior knowledge and expertise:

RQ2 Does the expertise of experienced Machine Learning de-
velopers lead to them focusing on different aspects of the Machine
Learning code compared to novice developers?

To address these questions, we conducted a user study (N=18) in
which we asked participants to engage with different Python code
fragments (e.g., see Figure 2). Our results showed differences in the
reading behavior, which show that some syntactic structures are
read differently in code that implements Machine Learning models.
This also implies that developers are aware of the differences and
adapt their behavior accordingly. Thus, for supporting developers,
machine learning code should not be treated the same as traditional
code. We also uncovered differences in expertise, which further
underpin the need for approaches specific to the target group and
context rather than one-size-fits-all solutions.

Given the changing nature of data-driven development as a par-
adigm for software creation, our insights inform decisions on how
to better support developers. Future development can achieve this
in numerous ways, e.g., via the design of dedicated programming
languages, libraries and frameworks, and support mechanisms and
tools that take into account which parts of the code are relevant or
not. Thus, we see this work as a foundational step in assessing de-
veloper behavior in the evolving field of data-driven development.

2 Related Work
While the concept and field of Machine Learning are many decades
old, more recent advances like deep learning, i.e., Machine Learn-
ing with highly complex models, and an increase in computational
power have propelled it into the mainstream for software devel-
opment. As previously discussed, this brings with it changes to
software development. The following section will briefly outline
how literature has addressed these changes. Beyond that, we will
also provide some background about the methodology we used to
advance the state of research in this field, eye tracking.

2.1 Developing Machine Learning Systems
Developers now use Machine Learning (ML) in many areas; thus, it
is essential for software engineers to be familiar with the general
concepts. However, ML adds additional complexity to the develop-
ment since developers must create and improve not just the code
but also the underlying data and ML models [20]. Thus, making
these complex ML systems easier to understand is important. While
there are successful efforts to make traditional code easier to under-
stand, e.g. using ML [7], the different level of complexity in code of
data-driven applications remains an open challenge.

Prior work has recognized developers as a valuable target group
for improving theML experience [3, 11, 35, 36, 40, 42]. Consequently,
researchers and industry have produced several methods, tools, and
support mechanisms to assist software developers in creating data-
driven applications. Here, they have created tools to support ML
programming in a more user-friendly manner for decades. One of
the earlier, well-known ones is RapidMiner (originally YALE) [43],
which leverages graphical programming to present complex data
processing pipelines in a simple, visual format. This graphical ap-
proach has been extended and adopted in many tools since, like
Orange [13], Darwin [15], KNIME [8], and many more.

Nonetheless, textual programming remains the predominant
way of creating ML systems. At this level, the most substantial
improvements have come more from the now ubiquitous libraries
and frameworks (e.g., scikit-learn [38] or TensorFlow [1]), which
take over the low-level details and aim to provide easy-to-use ab-
stractions. Their development often happens in an ad-hoc fashion
and still needs more validation, e.g., whether the provided abstrac-
tions are appropriate. From the language design perspective, there
is a growing effort to optimize various aspects of programming
languages for ML, e.g., with the Compilers for Machine Learn-
ing workshop series. However, so far, they have focused more on
technical implementation. Meanwhile, improving the literal syntax
or creating ML-specific languages specific remains an interesting
avenue to make ML programming effective or efficient.

For now, Python is arguably one of the most widely adopted
programming languages in the area of data-driven applications,
particularly in combination with computational notebooks [50]
like Jupyter notebooks and Google Colab. This type of editor is a
traditional code editor at its core but offers increased interactivity
and allows developers to mix documentation, code, and outputs in
one document. Naturally then, there are efforts to improve these
notebooks as well. The mage [26, 27] extensions for Jupyter note-
books, for example, adds interactive widgets which let data workers
modify the output of their code. These changes are automatically
reflected, similar to Programming-by-Example systems [32]. The
feedback from a subsequent user study was positive, highlighting
some of the challenges of ML code which can be complex, partic-
ularly for novices. Therefore, they suggested hiding parts of the
code that would confuse them. More experienced developers, on
the other hand, viewed the presentation in code more favorably.

The interactivity of computational notebooks greatly facilitates
developers’ exploratory behavior. This also brings challenges; since
ML systems are a tight interplay betweenmodels and data, maintain-
ing an overview of various configurations can be difficult [12, 24, 25].
The evaluations conducted for some of these systems show their po-
tential benefits, but these are difficult to separate from the concrete
implementations. Creating fully working software tools like that re-
quires much development upfront. Rigorous requirement elicitation
is desirable to motivate this kind of effort. Yet, while some of these
projects start with an initial phase of gathering user requirements
[14, 24, 26] the reporting typically emphasizes summative evalua-
tions. Additionally, they often build on anecdotal evidence and the
experience of their creators. This limits how well other researchers
can rely on the insights that informed the original design. We argue
that this common top-down approach, i.e., evaluating a full, work-
ing system with a focus on summative results, can be supported by

www.c4ml.org
www.c4ml.org
https://jupyter.org
https://colab.research.google.com

An Investigation of How Software Developers Read Machine Learning Code ESEM ’24, October 24–25, 2024, Barcelona, Spain

a bottom-up perspective, i.e., early formative assessment, where
one investigates various low-level aspects of the development first
to get a foundational understanding of the requirements of data-
driven development (cf. [28, 33]). These insights inform further
design decisions, especially with existing knowledge from tradi-
tional software development. Instead, we can first determine where
these development paradigms match and differ. To get a compre-
hensive overview, so far, researchers investigated multiple different
aspects that play a role during software development, from devel-
opment processes to collaboration or how developers write code.
Hesenius et al. [18], for example, investigate these differences on the
process level and highlight where current development processes
do not accommodate data-driven development. In consequence,
they propose an extension to established development processes,
the Engineering Data Driven Applications (EDDA) process, which
contains additional steps specific to data-driven development.

Given the number of publicly available software projects on on-
line collaboration platforms, they have also become a prominent
source for further insights into how developers work. For example,
Simmons et al. [51] compared roughly 2,000 public repositories, half
with ML and half using traditional code, concerning code quality.
Their analysis concludes that there are some similarities but notable
differences between traditional and ML code. While the complexity
of the code base, as measured by McCabe’s Cyclomatic Complexity
[30], is similar, it appears that repositories of data-driven applica-
tions adhere less to existing coding and naming conventions. While
using the code repositories alone, they could not determine the
reason for these differences. They did highlight differences in the
developers’ behavior, which warrant further investigation. How-
ever, the use of code quality metrics leaves it unclear whether the
repositories are, in fact, also structurally different or whether the
same structures are just present in a different quality.

In this paper, we will continue this line of research to determine
the differences between ML and traditional code. However, we will
primarily focus on human behavior using eye tracking, a method
frequently used in empirical analyses of software developers.

2.2 Research using Eye Tracking
Sharafi et al. [46] provide an overview of several publications which
emphasize the need for a uniform nomenclature to carry out eye-
tracking studies, particularly for behavioral observation of Software
Engineering. Their paper provides an overview of terms such as
“fixation rate,” “saccades,” and their use in existing eye-tracking
studies in Software Engineering. We will follow the terminology by
Sharafi et al. [46]. In addition to that, Sharafi et al. [47] expand on
this with a systematic review of eye tracking in software engineer-
ing, showcasing the benefits of the method for investigating several
questions, including but not limited to debugging [5, 17], code
comprehension [6, 44], and collaboration [48], all of which could
contribute to a better understanding of software development [21].

Eye tracking as code reading behavior measurement has been
discussed in a series of publications. For example, Busjahn et al.
[10] compared the linearity of the reading order in software code
structures of inexperienced and experienced software developers.
They analyzed this by first having inexperienced programmers read
natural language text, then programming code, and then having

experienced programmers read code. They also show that inexpe-
rienced programmers read code less linearly than natural text but
still more linearly than experts [10]. Peachock et al. [37] show, in a
replication study, that developers read source code less linearly than
natural text but that there are no differences in linearity regarding
the level of experience or programming skills.

Peitek et al. [39] investigated the linearity and reading order of
code. They conclude that “the linearity of source code is a major
driving factor that determines programmers’ reading order, while
experience and comprehension strategy seems to play more minor
roles” [39]. Since the functionality of Machine Learning systems,
particularly those using Neural Networks, depend less on the lin-
earity of instructions in the code and more on implicit factors like
the data, weights, etc., this effect may not translate to this different
development paradigm and thus warrants further analysis.

Weber et al. [53] investigated these differences and leveraged the
structure of code to determine which elements in ML code are areas
of interest for novice programmers. They found reading patterns
that suggest that there are benefits to linearity in this context.
Since the study by Peitek et al. [39], which suggests that prior
knowledge is only of minor importance for code reading behavior,
was on traditional code only, and the study by Weber et al. [53]
was on novices only, it remains still unclear how ML professionals
and experts are affected. Particularly for a paradigm like Machine
Learning, which may not yet be part of the early education for all
programmers, expertise may play a more significant role.

Thus, we can conclude that the reading behavior of developers
can but does not have to vary based on multiple factors like code
structure and prior knowledge. In the context of Machine Learning
code, these effects have only been explored for novices [53]. So, we
expand on this in this work by collecting new data from a study that
includes experts. This should increase generalizability and provide
insights into an important target group.

3 Static Analysis of Code Repositories
In preparation for our study of developer behavior, we analysed
publicly available code repositories to determine whether there
were quantifiable differences between the two types of repositories
– repositories with machine learning functionality and without. For
this, we selected 3,515 code repositories from the literature [9, 51]
more recent additions, based on GitHub’s popularity metrics, and
counted the different grammatical constructs in the code. Of these
repositories 1,534 contained applications that utilize machine learn-
ing, while the remaining 1,981 were traditional applications. We
screened all repositories to manually decide to which of these two
categories each repository belonged, since, for example, metadata
indicating machine learning content was not enough to decide
whether a repository used ML functionality or implemented it us-
ing traditional programming methods. These repositories all used
the Python programming language, since it is both general purpose
language with wide adoption but is also very popular for machine
learning [52], making it an ideal candidate for comparative studies.

After downloading the current state of these repositories, we
used the Python ast package to construct the Abstract Syntax Trees
for the Python code in the repositories. We accumulated the number
of occurrences for each grammar construct from Python’s formal

https://docs.python.org/3/reference/grammar.html
https://docs.python.org/3/reference/grammar.html

ESEM ’24, October 24–25, 2024, Barcelona, Spain Weber et al.

grammar for all valid ASTs (1,431 traditional repositories, 885 with
ML) and then normalized that by the total repository size. Thus, we
received a relative frequency for each construct for every repository.

We conducted a statistical analysis on the log-transformed data.
Based on visual analysis and the Shapiro-Wilk test, we used both
Student’s t-test and Mann-Whitney-U test, where we compared
the relative frequencies between each pair of data for the machine
learning and the traditional repositories. Of the 86 different pairs
of code constructs as part of the formal grammar, we found signif-
icant differences (𝑝 < 0.05) for 79 different code constructs (see
supplementary for the complete listing).

From this, we concluded that there are structural differences be-
tween the two development paradigms. Certain code elements seem
to appear more frequently, while others seem to be less common in
ML code. For example, ML repositories appear to have a relatively
higher ratio of imports but fewer instances of exception handling
compared to repositories with traditional code. Thus, we continued
to investigate whether developers are implicitly or explicitly aware
of these differences and how they incorporate this in their behavior.
Thus, we conducted the following eye tracking study.

4 Methodology
To determine the reading behavior of developers for Machine Learn-
ing code, we adopt and adapt the methodology proposed by Weber
et al. [53], which relies on the structured nature of software code.
We expand upon their methodology, though, with a systematic
selection of the code fragments to enhance comparability. The fol-
lowing section describes this general methodology and any changes
to the process which we took to address our research questions.

4.1 Study Design
We performed an in-person, within-subject user study using eye-
tracking data from developers while they read a selection of code
fragments. We used a graphical user interface nearly identical to
that in the study of Rodeghero et al. [44], which uniformly dis-
played the code. Like in the original interface, we used no syntax
highlighting or other visual support mechanisms, as this could im-
pact the gaze, e.g., via preattentive perception. At this point, we do
not yet know which code structures we could or should highlight,
as this is part of the potential implications of our study, so we opted
for the highlight-less approach. Nonetheless, the UI displayed the
code in a monospaced font, as is typical for code editors. This also
helped with defining clearly distinct areas of interest later on. We
also excluded any comments from the code, as they could draw a
disproportionate amount of attention and thus skew the results.
See the work of Rodeghero et al. [44] for a further discussion of
the benefits and drawbacks of this presentation. Since we used a
within-subject design, each participant used the UI to read each
code fragment described below.

4.2 Procedure
Besides displaying the code, the interface served a secondary func-
tion: to create engagement of the study participants with the code.
The participants had the task of summarizing each code fragment’s
key functionality and purpose in their own words. In this way, we
required participants to read the code carefully. We asked them to

type their summary directly in the interface, which offered an input
field next to the code on the right half of the screen. To better un-
derstand their behavior, we also used the think-aloud protocol [49],
i.e. we asked participants to verbalize their behavior and thought
process, which we manually transcribed. After fragment summa-
rization, they moved on to the next code fragment. We limited
the total duration of the study to 40 minutes, i.e., five minutes per
fragment, to prevent effects due to exhaustion. However, this only
served as a guideline for the participants; they were free to move
on from a code fragment if they believed they had sufficiently sum-
marized it. Beyond this, we also collected additional feedback about
the code fragments, demographic data, and prior knowledge with a
questionnaire at the end.

4.3 Selection of the Code Fragments
In total, we selected eight Python code fragments for our study.
We only used code written in the Python programming language,
which we previously also selected for the static analysis due to its
popularity in general but also formachine learning [52]. To facilitate
the comparison in RQ1, half of these was code that uses Machine
Learning in some capacity, while the other half was traditional code
without Machine Learning.

Since code quality can differ widely in software projects, we
selected our code fragments from Python libraries with a large
user base. The idea behind this is that these libraries typically have
fairly high standards concerning code style and quality and act
as a role model for other developers. Therefore, we picked our
fragments evenly from example code from the repositories of the
TensorFlow [1] and scikit-learn [38] libraries for ML code, i.e. using
code that uses these libraries, and from the matplotlib, flask, and
request libraries for the non-ML code. For the ML code examples,
we made sure to pick code that uses multiple different ML models
using both unsupervised and supervised learning. We looked for
similar pairwise ML and non-ML fragments to enable gaze pattern
comparison. The first criterion for this was the length in lines of
code where we paired fragments of equal length. We also had to
consider our screen size since we wanted to minimize interfering
variables, such as scrolling through long code examples. Therefore
the code fragments did not exceed 60 lines of code.

We followed the approach by Shaffer et al. [45] and Weber et al.
[53], who used the constructs from the programming languages’
formal grammar to determine areas of interest in the gaze data.
While we had previously shown that different constructs occur at
different frequencies, picking code that would accurately reflect
these differences would skew the gaze dwell times. Thus, we aimed
for a similar distribution of the constructs for each pair of ML and
non-ML code fragments, while keeping distinctly ML and non ML
functionality in the code. Table 1 lists the frequency of construct in
each pair of code fragments. Since not all 84 grammar constructs
were present in the code, the following evaluation will deal exclu-
sively with those present. For each participant, we displayed ML
and traditional code fragments in an alternating sequence.

Finally, we selected two sets of code fragments to account for
the different expertise levels of novices and experts. This allows us
to probe RQ2 further. As Kahney [22] discussed, choosing a single,

https://docs.python.org/3/reference/grammar.html
https://www.tensorflow.org
https://scikit-learn.org
https://matplotlib.org
https://flask.palletsprojects.com/
https://docs.python-requests.org/

An Investigation of How Software Developers Read Machine Learning Code ESEM ’24, October 24–25, 2024, Barcelona, Spain

simple task can easily lead to task performance becoming indistin-
guishable between the groups. Gugerty and Olson [16] compared
novices and experts using the same LOGO code fragments with
only minor modifications for the experts, but also discuss that this
approach has the issue that with such similar code, one cannot
fully explore the experts’ skills. Using two structurally similar sets
of different complexity, we hoped not to overwhelm the novices
and, at the same time, ensure that the experts read source code
appropriate for their prior knowledge, thus avoiding the effects
of mental over- and underload. To gauge how effective the selec-
tion was, we collected feedback on the code fragments using the
questionnaire, qualitatively using free text answers, and quantita-
tively using a five-point Likert scale, where participants provided
their perspectives on how complex and challenging they considered
the two types of code fragments. Furthermore, we collected the
code summarizations each participant wrote to gauge whether they
understood the key concepts and actions in the code.

4.4 Apparatus
We recorded the gaze of our participants using a Tobii 4C on-screen
eye tracker, which provides data at a sample rate of 90 Hz. The
tracker was attached to a 20” monitor, set up in a well-lit room
without outside distractions. We calibrated the tracker for each
participant individually before reading the code.

4.5 Participants
We invited 18 participants from local companies and academic
institutions via personal and professional contacts. For their partici-
pation of up to one hour, they received compensation equivalent to
10 USD. Of the twelve experienced and six novice developers, half
were female, and half were male, with a mean age of 26 years (SD:
2.78). With a background in computer science, they were either in
the final year of their Master’s program or had a completed Mas-
ter’s degree and were now either working in industry or pursuing
a Ph.D. In addition, two-thirds of the experts reported currently
working on one or more projects involving a substantial amount
of ML. The remaining third was not actively working on such a
project but had prior experience with the technology.

Our distinction between novices and experts is based on par-
ticipants’ self-assessment during recruitment and is corroborated
by additional background information which the participants pro-
vided in the questionnaire. For example, all novices but one listed
their programming experience to be between three and five years,
while most experts have at least five years of general programming
experience. Focusing on the Python programming language, all
participants were familiar with it, although all experts indicated a
high or very high level of expertise (5-point Likert scale), while the
novices rated their knowledge as low to average. The same applies
to prior knowledge about Machine Learning, where the two groups
are discretely split along the middle of the Likert scale.

4.6 Data Processing
The structured nature of software code and its formal division into
defined structural elements allows for very defined areas of interest.
In addition, the presentation using a monospaced font gives clear
bounding boxes for gaze targets. After collecting the gaze data in

the user study, we applied an analytical approach as follows, in line
withWeber et al. [53]. For this process, we recorded howmany gaze
points fell into each bounding box and could then determine what
grammatical construct in the code and, thus, to which programming
concept each gaze point belongs. Figure 2 shows an example of the
subdivision. We then counted the number of recorded gaze points
per area, thus giving us a measure of the dwell time for each area
and, when accumulated, for each type of code element.

Not all participants spent the same time reading each code frag-
ment, so we consider only the relative percentage of gaze points per
participant. Furthermore, different structural code elements take
up more screen space, so naturally, they attract more gaze points
than smaller code elements. Thus, we also divided the gaze point
percentage by each code fragment’s relative area. Since we use a
monospace font, this automatically also normalizes the data against
character count. Thus, the resulting data is normalized against
temporal and spatial factors and allows for a comparison between
groups and code elements to answer the research questions.

To determine differences in the participant’s code-reading be-
havior, we first used heatmaps and a replay of the participants’
gaze paths to gain a high-level overview of the data. Second, we
used a quantitative method to determine the dwell time for each
area of interest, i.e., each syntactical code structure, which allowed
us to find general reading patterns and specific parts of the code
which caught the developers’ attention. After normalizing the gaze
to accommodate user-specific offsets, we visualized the heatmaps
using the kernel density estimation (KDE) of the seaborn library
with the Epanechnikov Kernel. We used Silverman Algorithm [2]
for bandwidth optimization, leading to heatmaps, as shown in Fig-
ure 1. We overlaid each heatmap with its respective code fragment
to better determine which part of the code participants looked at.

While these visualizations already suggest some interesting pat-
terns, purely accumulated dwell times may not accurately reflect,
for example, frequent jumps between the same points, thus, we also
employed a tool for replaying the gaze tracks. With this tool, we
could visualize the path of gaze points across time to review the
eye movement across code fragments. This showed the reading pro-
gression of our participants, clearly indicating, e.g., what elements
participants looked at first. It also provided a first glance at which
elements were most relevant, as indicated by a long dwell time.

5 Results
In the following section, we will summarize the results of the user
study and the analysis of the recorded gaze data using the method-
ology described in the previous section and the literature.

5.1 Research Question 1
To address RQ1, we first investigate the reading behavior for dif-
ferent code fragments, specifically whether code with ML elements
is read differently to code without. When we compared the reading
behavior of different developers, we could already see different
search strategies being used by participants. Replaying the partici-
pants’ gaze, we saw that several participants read code fragments
sequentially, top to bottom, showcasing patterns akin to Nielsen’s
F-patterns [34]. The F-pattern means that the reader first performs
horizontal scans of the document and then continues with vertical

https://seaborn.pydata.org

ESEM ’24, October 24–25, 2024, Barcelona, Spain Weber et al.

Table 1: Absolute number of each grammatical code construct per code fragment for both novices and experts. We paired ML
and non-ML code fragments based on a similar distribution frequency of those constructs.

Code for novice developers Code for expert developers

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7 Pair 8

ML non-ML ML non-ML ML non-ML ML non-ML ML non-ML ML non-ML ML non-ML ML non-ML

Import statement 2 - 2 2 - - - - 3 5 3 1 8 3 7 2
Variable declaration 4 2 8 2 9 8 7 13 7 22 9 9 19 11 12 14
Function definition - 1 - - 2 1 1 3 - - - - 2 - - 1
Function body - 1 - - 2 1 1 3 - - - - 2 - - 1
Function parameter 2 4 6 4 14 6 28 10 17 30 14 9 18 12 20 26
Function call 3 2 7 5 11 9 39 3 21 28 21 6 18 14 18 27
Literal 3 3 2 3 11 12 70 15 22 41 14 4 56 18 24 36
Index based access 1 - 4 - 3 5 12 - 4 7 2 1 1 - - -
if block condition - 3 - - - 4 5 8 - - - - - - - 1
if block body - 2 - - - 1 5 7 - - - - - - - 1
Loop condition - 1 1 1 2 - - - 1 - - - 2 1 - 1
Loop body - 1 1 1 1 - - - 1 - - - - 1 - 1
Return statement - 1 - - - 1 - 1 - - - - 2 - - 1

Total lines of code 9 7 16 9 20 23 38 41 51 59 30 30 60 39 59 60

Figure 1: Heatmap of different search and reading strategies.
A replay of the gaze tracks showed that the novices (top)
showedmostly sequential reading, while the experts (bottom)
jumped to selective points of interest.

scanning. Those who do not show the F-pattern behavior ignore or
skim the majority of the code and jump to areas of seeming interest,
where they remain for a considerable amount of time.

Reading behavior without F-patterns is much more prominent
in code that implements ML models, while the traditional code is
read sequentially for the majority of the time. Of the eight code
fragments per participant, we observed sequential reading in the
traditional code 46 times and 28 times in ML code. Selectively
readingML code fragments also includes backtracking, i.e., jumping
back to parts of the code that participants had previously read. This
is also much less pronounced for the traditional code fragments.

To further investigate which parts of the code are seemingly
more important, we used code’s grammatical structure to analyze
at which elements the participants look at the longest and, thus,

Figure 2: Examples from each type of code and how they
were divided into discrete areas of interest based on Pythons’
formal grammar.

may be particularly interesting. Therefore, we subdivided the total
text area into small rectangular areas of interest for each type of
code element and determined the dwell time for each, see Figure 2.
We then normalized the dwell time to account for differences in
area and how long different participants spent for the whole code
fragment. Figure 3 shows the normalized dwell time for the two
groups in our study and the different code elements for source code
that does and does not use ML. This already visualizes that certain
fragments in the code receive relatively more attention than others.

Considering that the two groups, experts and novices, had differ-
ent code fragments according to their skill levels, we analyzed the
two groups separately. In addition, a first inspection also showed
that participants entirely ignored some of the code structures in
some test conditions. Thus, we first created a binary distinction at
which code fragments novices and experts had looked at. This anal-
ysis showed that participants ignored some code elements, namely
conditional if -statements, class definitions, and function defini-
tions. However, this is an infrequent behavior. Return statements,
while similarly infrequent, received more attention. Here, one of the
participants even mentioned that they consider return statements
an important indicator for the function of a code fragment. Based
on these initial insights, we will not interpret behavior for code
that participants did not read in any of the study conditions in the
further analysis since we cannot determine meaningful statistical

An Investigation of How Software Developers Read Machine Learning Code ESEM ’24, October 24–25, 2024, Barcelona, Spain

Parameter

Experts
Novices

Function bodyVariable declarationImport statement Literal Loop conditionFunction call Index-based access Loop body

N
or

m
al

iz
ed

 d
w

el
l t

im
e

Code type: Traditional Machine Learning

*** *** *** *** **

* ** * *** *** *** *** *

** *** *** ** *** ** *** * *** * ***

Figure 3: Distribution of the relative number of gaze points per area of interest for both participant groups and both types of
code fragment. (*: 𝑝 < 0.05, **: 𝑝 < 0.01, ***: 𝑝 < 0.001, cf. Table 2, Table 3)

results beyond the binary distinction, see Figure 3. This resulted in
nine types of code elements for further analysis.

To systematically investigate the question of whether there are
differences between the two types of code, we compare the mean
normalized dwell time for each code element between the code
fragments with and without ML, see Table 2. Based on the results of
a Shapiro-Wilk test, we then performed a paired t-test or Wilcoxon
test for all code elements to determine which statistically significant
differences between Traditional and ML exist for the two groups,
Novices and Experts, independently. There are several significant
differences between the types of code for both groups, see Table 2.
We note that these differences are not the same for both groups.

We found similar differences for function, import statements, and
index-based data access, with both groups spending significantly
more time. The experts also spend significantly less time on literals
in ML code. On the other hand, the novices looked more at function
parameters and variable declarations in the ML fragments.

5.2 Research Question 2
To answer the second research question (RQ2), we compare the six
novice developers and their gaze behavior with that of the twelve
that report a higher degree of experience with Machine Learning.
While these two groups read two different types of code fragments,
we ensured to select syntactically similar code fragments of roughly
equal length and structure (see Table 1). Based on their feedback,
both groups also considered the code fragments semantically to
be of similar, medium difficulty, as indicated by the median of the
Likert scales being the neutral option and no significant differences
(Mann-Whitney-U-test, 𝑝 = 0.294) between the study conditions.

Concerning the search strategies, it was noticeable that of the
six novice developers, four showed F-patterns across both types of

source code, while the other two sometimes followed this strategy
and sometimes jumped with their gaze. We could, however, not
determine how the code influenced the pattern concerning the
type of code when they would choose one or the other strategy. In
comparison, the experienced developers also applied the sequential,
F-pattern-based reading strategy for the traditional Python code
but for the Machine Learning code only at most half, typically three
to four, were scanning through the code fragments while the other
half was selective in their reading. It is worth mentioning that all
experts applied both strategies at some point. This indicates that
expertise may come with knowledge about which parts of the code
are worth looking at and which are not.

When asked what aspects of the code they deemed most helpful
to foster understanding, almost all novices mentioned clear vari-
able names. They also listed comments, although, as previously
mentioned, we removed them from the code fragments. For the
experts, seven mentioned the names of certain models in the code
and especially in the import statements to be helpful. This also
showed in the reading behavior where the less experienced partici-
pants, who selectively read the ML fragments, often focused not on
ML-specific keywords, unlike the expert, but instead paid attention
to more commonly understood terminology like the use of plots to
visualize results. This effect was visible in relatively longer dwell
times and was corroborated by the feedback in both the code sum-
marization and the questionnaire. In comparison, these parts were
almost always skipped by the expert developers who were, as they
mentioned, more interested in more advanced terminology, like the
names of the ML models used in the code. Based on the feedback in
the questionnaire, the novices did, however, notice some of these
ML-specific keywords but, as they were sometimes unfamiliar with
them, looked elsewhere for cues to understand the code.

ESEM ’24, October 24–25, 2024, Barcelona, Spain Weber et al.

Table 2: Statistical analysis of differences between the dwell time in various code elements in ML code fragments vs. non-ML
code fragments for both participant groups. All Wilcoxon-test are indicated with a △ . (*: 𝑝 < 0.05, **: 𝑝 < 0.01, ***: 𝑝 < 0.001)

Novices Experts

Normality test t-test / Wilcoxon-test Normality test t-test / Wilcoxon-test

W p t/W df p W p t/W df p

Import statement 0.866 .059 3.593 5 0.017 * 0.882 0.009 78△ 11 < 0.001 ***
Variable declaration 0.968 .893 4.9127 5 0.004 ** 0.970 0.675 −0.507 11 0.620
Function body 0.823 .017 0△ 5 0.031 * 0.925 0.076 8.148 11 < 0.001 ***
Parameter 0.957 .739 8.3604 5 < 0.001 *** 0.986 0.972 1.945 11 0.079
Function call 0.924 .319 10.931 5 < 0.001 *** 0.951 0.281 5.569 11 < 0.001 ***
Literal 0.951 .646 −2.3253 5 0.068 0.925 0.077 −5.785 11 < 0.001 ***
Index-based access 0.875 .076 7.3625 5 < 0.001 *** 0.898 0.020 78△ 11 0.003 **
Loop condition 0.900 .161 20.759 5 < 0.001 *** 0.955 0.353 −0.210 11 0.838
Loop body 0.824 .017 21△ 5 0.031 * 0.959 0.427 0.461 11 0.653

Beyond this qualitative feedback, we also performed the quanti-
tative analysis of the gaze data for differences between expertise,
as listed in Table 3 and visualized in Figure 3. One difference that
immediately becomes apparent is the fact that the distribution of
gaze data of the novices is more spread across the different code
elements. Experts, on the other hand, focus the majority of their
attention on function calls and their parameters, as well as variable
declarations, while the other elements play a relatively minor role.
Still, function parameters and variables declarations are similarly
important for the novices, but the function calls receive signifi-
cantly more attention from the experts, both in traditional and ML
code fragments. For function parameters and variable declarations,
there appears to be a certain dependence on the type of code: ex-
perts value function parameters significantly more than novices in
traditional code, while novices spend more time with variables in
ML code. Beyond this, control flow via loops offers consistent dif-
ferences, where novices look at loop conditions and the loop body
significantly longer. The same also applies to the encapsulation
of code in functions, with novices spending a significantly larger
portion of their gaze on the body of such functions. Lastly, the parts
to do with index-based data access in lists or similar data structures
are notable. Here, novices spend little time reading them in the tra-
ditional code examples, just like the experts, but spend significantly
more time on them in the ML code. The answers in the question-
naire provide some indication as to why this might be: Python has
a syntax that goes beyond simple numerical access of list elements
and allows, for example, to select ranges or “slices” of data. While
this syntax is often used in ML code, it has less frequent applica-
tions in traditional code. For this reason, two novice participants
mentioned that they found this unfamiliar syntax challenging.

6 Discussion
Our results show differences between the development paradigm
and the respective source code and between the developers of dif-
ferent levels of expertise. This suggests that developers are aware
of the structural differences in machine learning code and have de-
veloped behavioral strategies for different scenarios and code types.
Specifically, we saw different search strategies when reading code,
depending on expertise, where sequential scanning in F-patterns

was more prominent for novice developers and depending on the
development paradigm. Here, code without ML was more likely to
be read in order from top to bottom. These two observations may
very well be connected since the expert could be aware that ML
code warrants a distinct reading strategy, while the novices fall back
to the same way of reading they are used to from traditional code
and other areas. If this is the case, it implies that certain aspects
of the ML code are either trivial or entirely irrelevant to people
with prior ML knowledge. In turn, this has implications for tool
and framework design, which should strive to eliminate irrelevant
steps by abstraction so that developers do not spend time on them.
However, as this distinction was not completely binary, it may also
be the case that some information is only unnecessary in some use
cases and for some people, so flexibility and control over what is
hidden should be considered. An example from which we can take
inspiration is how modern IDEs handle import statements: since
they are often automatically generated and considered to be of little
relevance, they are typically “folded,” i.e., displayed as a group in a
single line. The developer can expand this presentation, offering
the necessary flexibility should a developer be interested in specific
import statements. Similarly, an IDE for data-driven development
could automatically detect a sequence of preparatory or visualiza-
tion steps and then collapse them into a single line labeled “data
preparation” or ”data visualization,” respectively. Automatic refac-
toring is an alternative that likewise detects these common blocks
and suggests moving them into a separate function, increasing
encapsulation, which adds to code readability and maintainability.

Sequential reading behavior may lead to issues with attention
in our study but also in general: in many of the code examples we
surveyed for our study, the first part of the code is preparatory
while the latter parts deal with the Machine Learning parts. This is
a widespread pattern, but the nature of F-pattern-shaped reading
could mean that the novices spend considerable attention on early,
less interesting parts and have little attention left for the learning
models at the end. At the same time, this could explain why experts
often skip early parts and directly jump further toward the end. As
mentioned above, one option is to minimize the space these parts
take up could alleviate this. Additionally, by extracting common
steps (e.g., data preparation, model configuration, training), an

An Investigation of How Software Developers Read Machine Learning Code ESEM ’24, October 24–25, 2024, Barcelona, Spain

Table 3: Statistical analysis of differences in the normalized dwell times between the two participant groups, novices, and
experts, for both traditional code fragments without Machine Learning and those with Machine Learning. All Mann–Whitney
U tests are indicated with a △ . (*: 𝑝 < 0.05, **: 𝑝 < 0.01, ***: 𝑝 < 0.001)

Traditional Code Fragments Machine Learning Code Fragments

Normality t-test / MWU-test Normality t-test / MWU-test

W p t/W df p W p t/W df p

Import statement 0.752 < 0.001 52△ 17 0.151 0.892 0.042 38△ 17 0.892
Variable declaration 0.974 0.873 1.825 15.781 0.087 0.976 0.893 −3.168 10.637 0.009 **
Function body 0.650 < 0.001 0△ 17 < 0.001 *** 0.699 < 0.001 0△ 17 < 0.001 ***
Parameter 0.922 0.143 3.706 11.721 0.003 ** 0.969 0.782 −0.919 14.272 0.373
Function call 0.907 0.077 5.316 15.696 < 0.001 *** 0.933 0.223 2.957 15.797 0.009 **
Literal 0.952 0.464 −2.184 11.044 0.051 0.904 0.066 −0.330 7.265 0.751
Index-based access 0.972 0.828 −0.684 8.269 0.513 0.941 0.302 −5.645 7.296 < 0.001 ***
Loop condition 0.958 0.558 −2.464 9.703 0.034 * 0.845 0.007 0△ 17 < 0.001 ***
Loop body 0.935 0.240 12△ 17 0.024 * 0.751 < 0.001 0△ 17 < 0.001 ***

editor could provide a table of contents, allowing one to quickly
jump to the relevant parts without the need to scan the complete
source code. In notebook-style editors, we could take this further,
since documentation and code are often mixed, by automatically
generating fitting headings for the steps in the process.

Another question regarding the sequence of the code and the
relevance of those steps remains whether this observation depends
on the Python programming language and the summarization task.
In different situations, developers may have different goals when
reading code, e.g., finding errors, finding new solutions, or commu-
nicating with collaborators. All of these might come with different
reading strategies. Thus, the differences we observed in our study
may be specific to the code summarization task and other activities
will show different reading patterns. Regarding the impact of the
Python language, we think its popularity makes Python a good
choice for a first analysis. Furthermore, its simple syntax makes it
fairly approachable and no participant severely struggled with the
task. Given that it was designed as a general-purpose language and
not specifically for data-driven development, some of the steps, e.g.,
the re-restructuring of data, can sometimes be fairly verbose with-
out offering new insights. We argue that this might be why experts
can use their experience to identify these areas as irrelevant quickly.
Meanwhile, novices needed help understanding the specific syntax
and spent more time with these parts without getting more valu-
able information. A syntax that is easier to understand or explore
would be the obvious solution but needs to be embedded in the
existing programming environment. Of course, tool designers must
strike a balance to ensure the interaction is sufficiently versatile, but
the generated code remains understandable and ideally helps novices
learn what is going on. Furthermore, any change in syntax should be
flexible enough to facilitate learning so that novices can, over time,
gain the expertise to use more compact, efficient means of data ac-
cess. Thus, UI designers should refrain from forcing novices into
using certain presentations without alternatives. Beyond language
and tool design, there may be similar effects due to sub-optimal
framework design, where steps that could be abstracted need to be
explicit in the code. A next step could be a comparison of popular
libraries and how they are received and used. Particularly those

that offer the same functionality across different programming lan-
guages, like TensorFlow, could yield interesting insights into the
effect of the underlying language.

Another factor influenced by high prior knowledge is which
code structures is of interest, where experts appear to know the
important terms that allow them to quickly grasp the meaning of
a code fragment, for example, via the imported libraries and the
ML terminology. Meanwhile, novices need significantly more time,
relying on control structures, e.g., loops, to follow what the code
does. Because often Machine Learning code uses fewer of these
control structures — after all the decision logic, and thus conditions
are learned from the data — this new development paradigm may
offer new challenges for understanding unknown code. Developers
who cannot rely on the high-level structure must either understand
the data, which often requires domain knowledge, or focus on spe-
cific details like known terminology, as we saw from our expert
developers. However, the appropriate presentation could help rein-
state high-level structures to data-driven development. Since many
ML systems follow a general structure of a data pipeline, with data
sources as input on the one side and a model as output, we could
leverage the sequential nature for presentation: graphical program-
ming already commonly uses blocks, which represent individual
steps in the data processing, and connections, which denote the
data-flow. However, the existing graphical tools (e.g., [8, 13, 43] for
data-driven application development are more niche. In principle,
this should also be easily possible in computational notebooks, but
the experience shows that maintaining an overview of data flow in
notebooks, where no execution order is enforced, can be challeng-
ing [12, 24, 25]. Explicitly visualizing data flow will assist developers
and mitigate the reliance on certain code structures for novices and
support debugging for both novices and experts.

When data defines how the software works, it is not surprising
that knowledge of the data itself and the code that manipulates said
data becomes more relevant. This may be why participants looked
more at index-based accesses in the code. When asked what parts of
the code were useful in the post-study questionnaire, participants
mentioned the names of the data set. Naturally, in our study, the ex-
perts would have an advantage here, as they are typically intimately

ESEM ’24, October 24–25, 2024, Barcelona, Spain Weber et al.

familiar with common data sets like IRIS or MNIST, but many of
the novices also voiced familiarity with those data sets, and none
of them listed the data set as detrimental to their understanding.
For real-world applications, however, data sets are usually more
complex and require domain knowledge, so support for data explo-
ration remains highly relevant for understanding ML systems. This
also increases the reliance on proper documentation, which may
explain the increasing popularity of more literate programming.

Another important question is how we can bridge the divide of
expertise. Since the experts learned their more selective and focused
reading over the years, we cannot expect novices to pick up these
skills immediately. Thus, developers will benefit from more visual
guidance, e.g., via visual highlighting. This may support novices in
acquiring the selection skills of experts more quickly. Our data can
be a basis for selecting which code elements need to be visually
more salient, e.g., data access, and which can be more subdued or
moved into configuration files, e.g., specific parameters and literals.
The ability to read code with an eye for the relevant bits should
also be part of programming education. Ultimately, the goal should
be that truly irrelevant code is either hidden away or takes up little
mental load so that novices are guided to the relevant code, and
experts benefit from less clutter.

6.1 Limitations
The differences we observed in the code structure level depend
on the code fragments’ selection. While we chose our code ex-
amples from popular libraries and tutorials, these may not reflect
the reality of software projects in the field of data-driven devel-
opment. The same applies, as previously mentioned, artificially
picking structurally similar code to facilitate comparability, even
though the larger code landscape has known differences. A further
in-depth study of code structure beyond just the grammatical con-
struct might lead to novel insights. For example, it could tell us
whether the structure we noted, with many preparatory steps at the
beginning and the seemingly interesting block in the second half, is
common and how we can use abstraction to reduce the necessity of
parts that expert developers mostly ignore. Some participants dis-
regarded the syntactic structures, this may be specific to our code
fragments. Thus, we argue that the next step should be extending
our insights by investigating real-world software projects.

Furthermore, the requirements of an experimental setup, e.g., the
removal of syntax highlighting, offer a limitation as it means that
the presentation deviates from how it would be done in the wild.
As this is common practice for experimental setups, as described
above, it allows for a reasonable comparison with prior work. Since
it is consistent within the study, it likely also does not affect the
comparative results, but an additional validation in a more realistic
setting is desirable. Likewise, the precision of eye tracking is an
important factor, as noise can easily skew the data. However, the
qualitative feedback of the participants as well as the replay of the
gaze tracks corroborates the differences in the quantitative data.

In addition, the comparison of expertise in these scenarios, as
in our study, remains quite challenging, as identical pieces of code
may over- or underwhelm developers leading to different reading
patterns. While our efforts to select syntactically and semantically
similar code fragments appear to be successful, since the feedback

on their complexity was comparable across all participants, it limits
the generalizability of our results and any interpretation should
consider this context. Larger code-bases will make it unfeasible,
though, to perform such an analysis as a laboratory experiment and
would require a field study, which comes with its own challenges.
Our experimental setup, so far, only observes these reading patterns
of the code as-is. Away to validate our findings could be to adapt the
presentation, e.g., highlighting or selection, or by excluding certain
code constructs, to see how this affects reading behavior, allowing
us to infer the importance of individual code constructs. A long-
term study could also add further insights into the effect of expertise
by observing how reading behavior changes over timewith growing
experience. Lastly, the sample of participants for our study was
limited and unbalanced between novices and experts. While the
results already show some statistically significant differences, a
larger pool of participants would strengthen these findings.

7 Conclusion
In this paper, we investigated developers’ gaze patterns and reading
behavior when reading code that implements ML models. Our re-
sults show that developers with prior Machine Learning knowledge
appear to fixate more on certain parts of the code, such as those sec-
tions that contain the creation and training of ML models. Novices
also stick to specific code structures, although the qualitative feed-
back indicates that this is not always because they consider this
part relevant but can also be due to its complexity and unfamiliarity.
Generally experienced developers more frequently skip through
the code, searching for the essential parts, while developers with
less prior knowledge tend to read source code linearly, independent
of the type of development paradigm. This indicates that certain
parts of the code are highly relevant while others offer little value,
which opens up opportunities for simplifying and streamlining this
type of code. By abstracting away distracting details, data-driven
development could become not just more efficient but also more
accessible to a wider, less experienced audience.

Concrete solutions that make a developer’s life easier can be
numerous, e.g., dedicated ML IDEs (integrated development en-
vironments) that support developers’ focus on the essential bits,
e.g., with syntax highlighting adapted to ML-specific structures.
However, even if they, theoretically, provide a benefit, there is no
guarantee of their adoption if they do not match how actual devel-
opers work in the real world. Therefore, these solutions should be
informed by empirical investigations such as the one presented in
this paper, and their success needs to be validated similarly.

Since ML is on its way into development mainstream, now may
be an ideal time to shape this area of software development and
introduce development concepts that go beyond how software
has been written for the last decades. We hope that this paper
contributes to the informed decisions behind these changes based
on empirical, human-centered evidence.

Open Science
We encourage the extension and reproduction of our work, we
include the list and analysis of the code repositories as well as the
eye-tracking data and code used in the user study as part of the
supplementary material to this paper.

https://osf.io/j5ezh/?view_only=ed81d816bda44f5488ab5e3a93eaf452

An Investigation of How Software Developers Read Machine Learning Code ESEM ’24, October 24–25, 2024, Barcelona, Spain

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Matt Adereth. 2014. Silverman’s Mode Estimation Method Explained.
http://adereth.github.io/blog/2014/10/12/silvermans-mode-detection-method-
explained/

[3] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald C. Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software engineering for machine learning: a case study. In Proceedings of
the 41st International Conference on Software Engineering: Software Engineering in
Practice (Montreal, QC, Canada) (ICSE (SEIP) 2019). IEEE / ACM, New York, NY,
USA, 291–300. https://doi.org/10.1109/ICSE-SEIP.2019.00042

[4] Abdul Ali Bangash, Hareem Sahar, Shaiful Alam Chowdhury, Alexander William
Wong, Abram Hindle, and Karim Ali. 2019. What do developers know about
machine learning: a study of ML discussions on StackOverflow. In Proceedings of
the 16th International Conference on Mining Software Repositories (Montreal, QC,
Canada) (MSR 2019). IEEE / ACM, 260–264. https://doi.org/10.1109/MSR.2019.
00052

[5] Roman Bednarik. 2012. Expertise-dependent visual attention strategies develop
over time during debugging with multiple code representations. Int. J. Hum.
Comput. Stud. 70, 2 (2012), 143–155. https://doi.org/10.1016/j.ijhcs.2011.09.003

[6] Roman Bednarik and Markku Tukiainen. 2006. An eye-tracking methodology
for characterizing program comprehension processes. In Proceedings of the 2006
Symposium on Eye Tracking Research & Applications (San Diego, California)
(ETRA ’06). Association for Computing Machinery, New York, NY, USA, 125–132.
https://doi.org/10.1145/1117309.1117356

[7] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neu-
ral Code Comprehension: A Learnable Representation of Code Semantics.
In Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018 (Montreal, QC, Canada)
(NeurIPS 2018). 3589–3601. https://proceedings.neurips.cc/paper/2018/hash/
17c3433fecc21b57000debdf7ad5c930-Abstract.html

[8] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias
Kötter, ThorstenMeinl, Peter Ohl, Kilian Thiel, and BerndWiswedel. 2009. KNIME
- the Konstanz Information Miner: Version 2.0 and Beyond. SIGKDD Explor. Newsl.
11, 1 (Nov. 2009), 26–31. https://doi.org/10.1145/1656274.1656280

[9] Sumon Biswas, Md Johirul Islam, Yijia Huang, and Hridesh Rajan. 2019. Boa
Meets Python: A Boa Dataset of Data Science Software in Python Language. In
2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR). 577–581. https://doi.org/10.1109/MSR.2019.00086

[10] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H. Pater-
son, Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. Eye Movements in
Code Reading: Relaxing the Linear Order. In Proceedings of the 2015 IEEE 23rd
International Conference on Program Comprehension (ICPC ’15). IEEE Computer
Society, USA, 255–265. https://doi.org/10.1109/ICPC.2015.36

[11] Carrie J. Cai and Philip J. Guo. 2019. Software Developers Learning Machine
Learning: Motivations, Hurdles, and Desires. In 2019 IEEE Symposium on Visual
Languages and Human-Centric Computing (Memphis, Tennessee, USA) (VL/HCC
2019). IEEE Computer Society, New York, NY, USA, 25–34. https://doi.org/10.
1109/VLHCC.2019.8818751

[12] Robert DeLine and Danyel Fisher. 2015. Supporting exploratory data analysis
with live programming. In 2015 IEEE Symposium on Visual Languages and Human-
Centric Computing (Atlanta, GA, USA) (VL/HCC). IEEE Computer Society, 111–
119. https://doi.org/10.1109/VLHCC.2015.7357205

[13] Janez Demsar, Tomaz Curk, Ales Erjavec, Crtomir Gorup, Tomaz Hocevar, Mitar
Milutinovic, Martin Mozina, Matija Polajnar, Marko Toplak, Anze Staric, Miha
Stajdohar, Lan Umek, Lan Zagar, Jure Zbontar, Marinka Zitnik, and Blaz Zupan.
2013. Orange: data mining toolbox in python. J. Mach. Learn. Res. 14, 1 (2013),
2349–2353. http://dl.acm.org/citation.cfm?id=2567736

[14] Jochen Görtler, Fred Hohman, Dominik Moritz, Kanit Wongsuphasawat, Dong-
hao Ren, Rahul Nair, Marc Kirchner, and Kayur Patel. 2022. Neo: Generalizing
Confusion Matrix Visualization to Hierarchical and Multi-Output Labels. In Pro-
ceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New
Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York,
NY, USA, Article 408, 13 pages. https://doi.org/10.1145/3491102.3501823

[15] Stephen Gould. 2012. DARWIN: a framework for machine learning and computer
vision research and development. J. Mach. Learn. Res. 13 (2012), 3533–3537.
http://dl.acm.org/citation.cfm?id=2503354

[16] L. Gugerty and G. Olson. 1986. Debugging by Skilled and Novice Programmers.
SIGCHI Bull. 17, 4 (apr 1986), 171–174. https://doi.org/10.1145/22339.22367

[17] Prateek Hejmady and N. Hari Narayanan. 2012. Visual attention patterns during
program debugging with an IDE. In Proceedings of the Symposium on Eye Tracking
Research and Applications (Santa Barbara, California) (ETRA ’12). Association for
Computing Machinery, New York, NY, USA, 197–200. https://doi.org/10.1145/
2168556.2168592

[18] Marc Hesenius, Nils Schwenzfeier, Ole Meyer, Wilhelm Koop, and Volker Gruhn.
2019. Towards a software engineering process for developing data-driven applica-
tions. In Proceedings of the 7th InternationalWorkshop on Realizing Artificial Intelli-
gence Synergies in Software Engineering, RAISE@ICSE 2019, Montreal, QC, Canada,
May 28, 2019. IEEE / ACM, 35–41. https://doi.org/10.1109/RAISE.2019.00014

[19] Andreas Höfer andWalter F. Tichy. 2006. Status of Empirical Research in Software
Engineering. In Empirical Software Engineering Issues. Critical Assessment and
Future Directions, International Workshop, Dagstuhl Castle, Germany, June 26-30,
2006. Revised Papers (Lecture Notes in Computer Science, Vol. 4336). Springer, 10–19.
https://doi.org/10.1007/978-3-540-71301-2_3

[20] Fred Hohman, Kanit Wongsuphasawat, Mary Beth Kery, and Kayur Patel. 2020.
Understanding and Visualizing Data Iteration in Machine Learning. In CHI ’20:
CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, April
25-30, 2020. ACM, 1–13. https://doi.org/10.1145/3313831.3376177

[21] Toyomi Ishida and Hidetake Uwano. 2019. Synchronized Analysis of Eye Move-
ment and EEG during Program Comprehension. In Proceedings of the 6th Interna-
tional Workshop on Eye Movements in Programming (Montreal, Quebec, Canada)
(EMIP ’19). IEEE Press, 26–32. https://doi.org/10.1109/EMIP.2019.00012

[22] Hank Kahney. 1983. What Do Novice Programmers Know about Recursion. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Boston, Massachusetts, USA) (CHI ’83). Association for Computing Machinery,
New York, NY, USA, 235–239. https://doi.org/10.1145/800045.801618

[23] Andrej Karpathy. 2017. Software 2.0. https://karpathy.medium.com/software-2-
0-a64152b37c35

[24] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 1265–1276.
https://doi.org/10.1145/3025453.3025626

[25] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers. 2018. The Story in the Notebook: Exploratory Data Science using a Literate
Programming Tool. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3173574.3173748

[26] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. mage: Fluid Moves Between Code and
Graphical Work in Computational Notebooks. In UIST ’20: The 33rd Annual ACM
Symposium on User Interface Software and Technology, Virtual Event, USA, October
20-23, 2020. ACM, 140–151. https://doi.org/10.1145/3379337.3415842

[27] Mary Beth Kery, Donghao Ren, KanitWongsuphasawat, Fred Hohman, and Kayur
Patel. 2020. The Future of Notebook Programming Is Fluid. In Extended Abstracts
of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu,
HI, USA) (CHI EA ’20). Association for Computing Machinery, New York, NY,
USA, 1–8. https://doi.org/10.1145/3334480.3383085

[28] Amy J. Ko, Htet Htet Aung, and Brad A. Myers. 2005. Design Requirements for
More Flexible Structured Editors from a Study of Programmers’ Text Editing. In
CHI ’05 Extended Abstracts on Human Factors in Computing Systems (Portland,
OR, USA) (CHI EA ’05). Association for Computing Machinery, New York, NY,
USA, 1557–1560. https://doi.org/10.1145/1056808.1056965

[29] André Luckow, Matthew Cook, Nathan Ashcraft, Edwin Weill, Emil Djerekarov,
and Bennie Vorster. 2016. Deep learning in the automotive industry: Applica-
tions and tools. In 2016 IEEE International Conference on Big Data, BigData 2016,
Washington DC, USA, December 5-8, 2016. IEEE Computer Society, 3759–3768.
https://doi.org/10.1109/BigData.2016.7841045

[30] Thomas J. McCabe. 1976. A Complexity Measure (Abstract). In Proceedings of the
2nd International Conference on Software Engineering, San Francisco, California,
USA, October 13-15, 1976. IEEE Computer Society, 407. http://dl.acm.org/citation.
cfm?id=807712

[31] Hafiz Suliman Munawar. 2020. Flood Disaster Management. John Wiley & Sons,
Ltd, Chapter 5, 115–146. https://doi.org/10.1002/9781119682042.ch5

[32] Brad A. Myers. 1986. Visual Programming, Programming by Example, and
Program Visualization: A Taxonomy. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Boston, Massachusetts, USA) (CHI
’86). Association for Computing Machinery, New York, NY, USA, 59–66. https:
//doi.org/10.1145/22627.22349

[33] Brad A. Myers, Amy J. Ko, Thomas D. LaToza, and YoungSeok Yoon. 2016. Pro-
grammers Are Users Too: Human-CenteredMethods for Improving Programming
Tools. Computer 49, 7 (2016), 44–52. https://doi.org/10.1109/MC.2016.200

[34] Jakob Nielsen. 2006. F-Shaped Pattern For Reading Web Content. https://www.
nngroup.com/articles/f-shaped-pattern-reading-web-content-discovered/ Re-
trieved 2024–11–02.

https://www.tensorflow.org/
http://adereth.github.io/blog/2014/10/12/silvermans-mode-detection-method-explained/
http://adereth.github.io/blog/2014/10/12/silvermans-mode-detection-method-explained/
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/MSR.2019.00052
https://doi.org/10.1109/MSR.2019.00052
https://doi.org/10.1016/j.ijhcs.2011.09.003
https://doi.org/10.1145/1117309.1117356
https://proceedings.neurips.cc/paper/2018/hash/17c3433fecc21b57000debdf7ad5c930-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/17c3433fecc21b57000debdf7ad5c930-Abstract.html
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1109/MSR.2019.00086
https://doi.org/10.1109/ICPC.2015.36
https://doi.org/10.1109/VLHCC.2019.8818751
https://doi.org/10.1109/VLHCC.2019.8818751
https://doi.org/10.1109/VLHCC.2015.7357205
http://dl.acm.org/citation.cfm?id=2567736
https://doi.org/10.1145/3491102.3501823
http://dl.acm.org/citation.cfm?id=2503354
https://doi.org/10.1145/22339.22367
https://doi.org/10.1145/2168556.2168592
https://doi.org/10.1145/2168556.2168592
https://doi.org/10.1109/RAISE.2019.00014
https://doi.org/10.1007/978-3-540-71301-2_3
https://doi.org/10.1145/3313831.3376177
https://doi.org/10.1109/EMIP.2019.00012
https://doi.org/10.1145/800045.801618
https://karpathy.medium.com/software-2-0-a64152b37c35
https://karpathy.medium.com/software-2-0-a64152b37c35
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3334480.3383085
https://doi.org/10.1145/1056808.1056965
https://doi.org/10.1109/BigData.2016.7841045
http://dl.acm.org/citation.cfm?id=807712
http://dl.acm.org/citation.cfm?id=807712
https://doi.org/10.1002/9781119682042.ch5
https://doi.org/10.1145/22627.22349
https://doi.org/10.1145/22627.22349
https://doi.org/10.1109/MC.2016.200
https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content-discovered/
https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content-discovered/

ESEM ’24, October 24–25, 2024, Barcelona, Spain Weber et al.

[35] Kayur Patel. 2012. Lowering the Barrier to Applying Machine Learning. Ph. D.
Dissertation. University of Washington, USA. https://hdl.handle.net/1773/22015

[36] Kayur Patel, James Fogarty, James A. Landay, and Beverly L. Harrison. 2008.
Examining Difficulties Software Developers Encounter in the Adoption of Statis-
tical Machine Learning. In Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008. AAAI
Press, 1563–1566. http://www.aaai.org/Library/AAAI/2008/aaai08-263.php

[37] Patrick Peachock, Nicholas Iovino, and Bonita Sharif. 2017. Investigating eye
movements in natural language and c++ source code-a replication experiment.
In International Conference on Augmented Cognition. Springer, 206–218.

[38] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[39] Norman Peitek, Janet Siegmund, and Sven Apel. 2020. What Drives the Read-
ing Order of Programmers? An Eye Tracking Study. In Proceedings of the 28th
International Conference on Program Comprehension (Seoul, Republic of Korea)
(ICPC ’20). Association for Computing Machinery, New York, NY, USA, 342–353.
https://doi.org/10.1145/3387904.3389279

[40] Alun Preece, Dan Harborne, Dave Braines, Richard Tomsett, and Supriyo
Chakraborty. 2018. Stakeholders in Explainable AI.

[41] Alvin Rajkomar, Jeffrey Dean, and Isaac Kohane. 2019. Machine Learning in
Medicine. New England Journal of Medicine 380, 14 (2019), 1347–1358. https:
//doi.org/10.1056/NEJMra1814259 PMID: 30943338.

[42] Mireia Ribera and Àgata Lapedriza. 2019. Can we do better explanations? A
proposal of user-centered explainable AI. In Joint Proceedings of the ACM IUI 2019
Workshops co-located with the 24th ACM Conference on Intelligent User Interfaces
(ACM) IUI 2019) (CEUR Workshop Proceedings, Vol. 2327). CEUR-WS.org. http:
//ceur-ws.org/Vol-2327/IUI19WS-ExSS2019-12.pdf

[43] Oliver Ritthoff, Ralf Klinkenberg, Simon Fischer, Ingo Mierswa, and Sven Felske.
2001. Yale: Yet Another Learning Environment.

[44] Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sidney K.
D’Mello. 2014. Improving automated source code summarization via an eye-
tracking study of programmers. In 36th International Conference on Software
Engineering (Hyderabad, India) (ICSE ’14). ACM, 390–401. https://doi.org/10.
1145/2568225.2568247

[45] Timothy R. Shaffer, Jenna L. Wise, Braden M. Walters, Sebastian C. Müller,
Michael Falcone, and Bonita Sharif. 2015. iTrace: enabling eye tracking on

software artifacts within the IDE to support software engineering tasks. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015. ACM, 954–957.
https://doi.org/10.1145/2786805.2803188

[46] Zohreh Sharafi, Timothy Shaffer, Bonita Sharif, and Yann-Gaël Guéhéneuc. 2015.
Eye-tracking metrics in software engineering. In 2015 Asia-Pacific Software Engi-
neering Conference (APSEC). IEEE, New York, NY, USA, 96–103.

[47] Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaël Guéhéneuc. 2015. A systematic
literature review on the usage of eye-tracking in software engineering. Inf. Softw.
Technol. 67 (2015), 79–107. https://doi.org/10.1016/j.infsof.2015.06.008

[48] Kshitij Sharma, Patrick Jermann, Marc-Antoine Nüssli, and Pierre Dillenbourg.
2013. Understanding Collaborative Program Comprehension: Interlacing Gaze
and Dialogues. In 10th International Conference on Computer-Supported Collabora-
tive Learning, CSCL 2013, Conference Proceedings, Volume 1: Full Papers & Symposia,
June 15-19, 2013, Madison, WI, USA. International Society of the Learning Sciences,
LuLu, Amazon, 430–437. https://repository.isls.org/handle/1/1944

[49] Helen Sharp, Jenny Preece, and Yvonne Rogers. 2019. Interaction Design: Be-
yond Human-Computer Interaction. Wiley. https://books.google.de/books?id=
UDeQDwAAQBAJ

[50] Helen Shen. 2014. Interactive notebooks: Sharing the code. Nature 515, 7525
(Nov. 2014), 151–152.

[51] Andrew J. Simmons, Scott Barnett, Jessica Rivera-Villicana, Akshat Bajaj, and
Rajesh Vasa. 2020. A large-scale comparative analysis of Coding Standard con-
formance in Open-Source Data Science projects. In ESEM ’20: ACM / IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, Bari,
Italy, October 5-7, 2020. ACM, 1:1–1:11. https://doi.org/10.1145/3382494.3410680

[52] G. Varoquaux, L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, and A. Mueller. 2015.
Scikit-Learn: Machine Learning Without Learning the Machinery. GetMobile:
Mobile Comp. and Comm. 19, 1 (jun 2015), 29–33. https://doi.org/10.1145/2786984.
2786995

[53] Thomas Weber, Christina Winiker, and Heinrich Hussmann. 2021. A Closer Look
at Machine Learning Code (CHI EA ’21). Association for Computing Machinery,
NewYork, NY, USA, Article 338, 6 pages. https://doi.org/10.1145/3411763.3451679

[54] Niklaus Wirth. 2008. A Brief History of Software Engineering. IEEE Annals of the
History of Computing 30, 3 (2008), 32–39. https://doi.org/10.1109/MAHC.2008.33

[55] Li Zhang, Jia-Hao Tian, Jing Jiang, Yi-Jun Liu, Meng-Yuan Pu, and Tao Yue. 2018.
Empirical Research in Software Engineering - A Literature Survey. J. Comput.
Sci. Technol. 33, 5 (2018), 876–899. https://doi.org/10.1007/s11390-018-1864-x

https://hdl.handle.net/1773/22015
http://www.aaai.org/Library/AAAI/2008/aaai08-263.php
https://doi.org/10.1145/3387904.3389279
https://doi.org/10.1056/NEJMra1814259
https://doi.org/10.1056/NEJMra1814259
http://ceur-ws.org/Vol-2327/IUI19WS-ExSS2019-12.pdf
http://ceur-ws.org/Vol-2327/IUI19WS-ExSS2019-12.pdf
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.1145/2786805.2803188
https://doi.org/10.1016/j.infsof.2015.06.008
https://repository.isls.org/handle/1/1944
https://books.google.de/books?id=UDeQDwAAQBAJ
https://books.google.de/books?id=UDeQDwAAQBAJ
https://doi.org/10.1145/3382494.3410680
https://doi.org/10.1145/2786984.2786995
https://doi.org/10.1145/2786984.2786995
https://doi.org/10.1145/3411763.3451679
https://doi.org/10.1109/MAHC.2008.33
https://doi.org/10.1007/s11390-018-1864-x

	Abstract
	1 Introduction
	2 Related Work
	2.1 Developing Machine Learning Systems
	2.2 Research using Eye Tracking

	3 Static Analysis of Code Repositories
	4 Methodology
	4.1 Study Design
	4.2 Procedure
	4.3 Selection of the Code Fragments
	4.4 Apparatus
	4.5 Participants
	4.6 Data Processing

	5 Results
	5.1 Research Question 1
	5.2 Research Question 2

	6 Discussion
	6.1 Limitations

	7 Conclusion
	References

