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Abstract—Human-human handovers are natural and seamless. 
To be able to do this, humans optimize towards many factors. 
One of them is the timing when receiving an object. However, 
the preferred robot reaction time in Human-Robot handovers 
is currently unclear. To understand the preferred robot reaction 
time, we trained an Space-Time-Separable Graph Convolutional 
Network (STS-GCN) model using motion capture data of human-
human handovers. We deployed this system on a robotic arm with 
live depth camera data. We conducted a user study (N=20) with 
five robot reaction times. We found that users perceived an early 
prediction as preferred. Furthermore, we found that designers 
can adapt this timing to their needs based on six sub-components 
of user perception. We contribute a ready-to-deploy handover 
classification model, a preferred handover time for our system, 
and an approach to determine the preferred robot reaction time 
for robotic systems. 

Index Terms—human-robot interaction, handover, human-to-
robot handover, preferred timing, cobot, robot. 

Fig. 1. A robot reacting to the users’ handover approach. 

I. INTRODUCTION 

Humans can intuitively interact naturally, seamlessly nav-
igating complex social cues and physical coordination, es-
pecially in simple yet fundamental tasks like handing over 
objects. Additionally, humans tend to understand systems as 
human partners expecting similar capabilities and interac-
tions [1]. Thus, efficient human-robot teams should have simi-
lar abilities to create the same fluent collaborations, requiring a 
bi-directional understanding of each other’s intentions [2]. Pre-
dictive robot behavior can improve effectiveness, fluency, and 
perception in human-robot interaction [3]. These skills would 
enable robots to assist humans in different environments, from 
handing over parts in an industrial working space to assisting 
people with limited reach in domestic environments [4]. Thus, 
we see a gap in robots conveying the intentions of their 
planned reactions to the human object hand approach. 

Previous research shows that many factors (e.g., grip, load 
force, gaze, and eye contact) are essential for fluent handovers 
between robots and humans [4], [5]. Prior work on human 
interaction led to the observation that the giver in a handover 
is responsible for the safety and successful handover of the 
object. At the same time, the receiver is responsible for the 
handover timing [6]. From this, in a human-to-robot handover 

setting, the timing of the robot and, therefore, the reaction time 
are crucial for the success of a handover. This responsibility 
leaves the robotic partner with a challenging spatial and tem-
poral precision task in handover interactions. Various previous 
works focus on forecasting and classifying human motion data 
using Machine Learning (ML), concluding handover intentions 
[7]–[10]. Those works show promising results in recognizing 
handover intentions between humans and robots. Previous 
work showed humans prefer faster behaviors over slower ones, 
leading to efficient handovers [11], [12]. Evaluating these 
interactions is also a well-researched topic, which nevertheless 
needs more generalizable metrics and benchmarks [13], show-
ing the importance of user studies validating their applicability. 
While previous studies have shown the importance of timing, 
how humans perceive them, and how evaluations can look, the 
question of optimizing reaction timings remains open. 

This work aims to understand the preferred reaction times 
of robots taking an object from a user. First, we developed a 
deep learning system to detect human handovers. Second, we 
used the system to change the robot’s reaction time to study 
which timing was preferred by users in a handover task. We 
used a publicly available dataset [14], [15] of human-human 
handover tasks to train a deep learning model to classify 
handovers based on extracted human poses. We achieved a 
92.78% frame accuracy using a Space-Time-Separable Graph 
Convolutional Network (STS-GCN) [16]. Using this model, 
we conducted a user study in which we systematically studied 
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the robot’s reaction time with five different conditions. We 
used the RoSAS [17] to measure warmth, competence, and 
discomfort, a set of metrics evaluating fluency, trust, and 
working alliance [13] proposed by Pan et al. [11] for Human-
Robot Collaboration, and the Too Little/Too Much Scale 
(TLTM) [18] to measure the preferred handover timing. 

With this work, we contribute (1) a ready-to-deploy adapted 
STS-GCN model for classifying human handover motion using 
preprocessed RGB-D camera data and (2) a preferred robot 
reaction timing of 3.38 seconds after users (given) intent to 
pick up an object, and (3) an approach to determine the 
preferred handover time for any robot handover setup. In 
a deployment of our model, we show that humans share 
a preference for reaction speed and know what feels best 
for them and what reaction to their movement is too fast 
or slow. Participants also shared preferences on the timing 
they favored. Here, we found that the ideal reaction time for 
our system is 3.38 seconds after we gave users the intent 
to pick up an object via an audio signal. Future work will 
need to validate this approach. Furthermore, the user study 
and the handover were carried out in a carefully controlled 
environment, leaving future research to conduct user studies 
using an open environment to perform various handovers. 

II. RELATED WORK 

In the following, we overview the literature on human-robot 
handovers, intent communication, the importance of timing in 
handovers, and machine learning for handover detection. 

A. Human-Robot Handovers 

Handovers are a form of joint action where collaboration 
between two agents, the giver and the receiver, is essential 
for the successful transition of an object [13]. These actions 
stand apart from individual tasks, requiring coordinated per-
formance, an anticipating understanding of others’ behaviors, 
adapting behavior for task compatibility, and precise action 
synchronization [19]. Both agents need to communicate on 
the what, when(timing), and where(location) of the handovers 
between them [20]. Previous work has already applied insights 
from human-human handovers to develop models for human-
robot handovers, which enable efficient and safe transfers 
of objects [7], [20], [21]. However, robotic systems per-
forming handovers are currently considerably slower than 
human-human interactions [22], [23]. The scope of existing 
research predominantly concentrates on robot-to-human han-
dovers [21], [24]–[28], with less emphasis on human-to-robot 
or bidirectional handovers [12], [29]–[31]. 

Literature found that a single handover has two distinct 
phases: The initial pre-handover phase and the physical han-
dover itself [32]–[34]. They are initiated by either the receiver 
requesting an object or an agent prompting another to use 
it for a task, acting as the giver [13]. However, handovers 
encompass many aspects that affect each handover. Many of 
these aspects have already been investigated by previous work. 
Grasp planning, which focuses on how the robot will physi-
cally grasp the object, is a critical element of this process [35], 

[36]. Perception, involving the robot’s ability to interpret its 
environment and the objects within it, is equally essential [37], 
[38]. The handover location is another significant factor, 
requiring careful consideration for efficiency and comfort for 
the human participant [29], [39]. Motion planning and control, 
which determine the robot’s movements and responses during 
the handover, are prerequisites for the smooth execution of 
the task [39], [40]. In the physical handover phase, grip force 
modulation is critical to ensure a secure yet gentle object 
transfer [6], [34]. The object itself also affects the perceived 
danger in handovers [41]. At the same time, error handling is 
necessary to address any issues that might arise [42], [43]. All 
of these aspects, which instigate human-robot handovers, start 
with the initial communication between the agents that want 
to initiate the handover. 

B. Intent Communication 

Successful handovers require a lot of explicit and sub-
conscious communication. Specifically, communication serves 
two purposes: it initiates the action by expressing the intent to 
start and facilitates the coordination of the action once under-
way [19]. Requesting an object and initiating the task forms 
the initialization of any handover process and, thus, requires 
effective communication [13]. Signaling strategies enhance 
coordination, enabling better prediction of each other’s actions 
and reducing uncertainty [44]–[46]. Humans are inherently 
good at subconsciously understanding others’ intents [47]. 
Thus, giving robots similar intent communication capabilities 
provides a natural way of using human knowledge for more 
seamless and successful human-robot handovers. 

Humans can communicate requests through various means, 
often using speech. However, Masumoto et al. [48] discovered 
that dividing an agent’s attention between different modalities 
can harm coordination during joint action. Between humans, 
non-verbal cues play an important role in social interaction 
and, therefore, in coordinating handovers between human 
agents [49]. Non-verbal communication can be divided into 
four main modes: kinesics, proxemics, haptics, and chrone-
mics, as well as multimodal combinations of these modes [50], 
which can all be transferred to robots. Human-like gaze cues 
in robot-initiated handovers can enhance these interactions’ 
timing and perceived quality [51]. Furthermore, grip and load 
forces are vital factors in coordinating handovers [6], [52]. 
Several studies have explored spatial behaviors and dynamics 
in handovers, examining where handovers occur in space [39], 
[53] and analyzing joint and limb motion of both the giver and 
receiver [54], [55]. The studies identified common kinematic 
characteristics in humans performing handovers, such as a 
rapid increase in arm velocity at the handovers’ beginning [54]. 

C. Importance of Timing in Handovers 

Timing plays a vital role in a wide range of HRI sce-
narios. From collaborative tasks to interactive performances, 
the precise timing of a robot’s actions significantly impacts 
both the efficiency and the overall user experience of these 
interactions [56]. Different timings also influence the social 



perception of the robot [11]. For robots to become valuable 
partners, they must be capable of fast and seamless handovers. 
Handing over an object, therefore, requires careful timing 
between the giver and the receiver [57]. In human-to-robot 
handovers, timing mainly refers to the robot’s reaction after 
communicating a handover intention. Previous work shows 
that the receiver is responsible for the timing, while the giver 
is responsible for the safety and success of handovers [6], [52]. 
Controzzi et al. [58] studied the preferred handover timing for 
handovers with humans as the receiver in two experiments: 
human-human handovers and robot-human handovers, finding 
the preferred reaction time for receivers when handed an 
object from a robot arm. While this brings understanding to 
the preferred receiver reaction timing, the preferred reaction 
timing of the robot’s arm, when the robot arm is the receiver 
and the user the giver, is still unknown. 

Admoni et al. [59] study the effect of introducing delays 
to emphasize robot non-verbal communication such as gaze. 
The timing of non-verbal communication can be quantified to 
the non-verbal communication happening around 1.2 seconds 
before the handover [39]. These findings enable robots to 
anticipate and predict rather than react to handovers for more 
fluent and seamless interaction [60], [61], reducing waiting 
times and enhancing collaboration. Koene et al. [62] demon-
strated that human-robot handover interactions have a notable 
adaptation by human participants to robotic movements, result-
ing in decreased delays and improved prediction of handover 
points, suggesting a speed-accuracy trade-off where users 
prefer faster interactions with robots, even at the expense of 
reduced precision. They, therefore, show that temporal aspects 
are of greater importance than spatial aspects. Pan et al. [12] 
studied the effect of robot speed and reaction time on perceived 
interaction quality and found that humans prefer human-level 
timing. However, their study only varied the timing with 
varying delays and not in the predictive direction. As human-
robot collaboration should be efficient [63], predicting the 
human motion to anticipate a handover could lead to faster 
interaction, which could be another trade-off to consider. 

D. Machine Learning to Understand Handovers 

Generally, there exist two approaches to understanding the 
handover approach: (1) forecasting the human skeleton based 
on the past motion sequence (e.g., [16], [64]–[66]), and (2) 
classifying the past motion sequence (e.g., Pan et al. [7]). 
This work will solely focus on the second approach, as 
classification approaches are still more robust. By combin-
ing LSTM networks and feature selection techniques, we 
can classify handovers from both the giver’s and receiver’s 
perspectives [67]. Spatial-Temporal Graph Convolutional Net-
works (ST-GCN) offer significant advantages in human ac-
tion recognition by effectively modeling dynamic skeleton 
sequences over time [8]. Drawing on the breakthroughs in 
self-attention mechanisms within the field of natural language 
processing (NLP), as highlighted in studies [68], [69], [70] 
introduced the transformer architecture [9] into human motion 
forecasting. They emphasize the concepts of time and space 

by designing a spatio-temporal transformer. Inspired by this 
approach, Mascaro et al. [10] proposed a model where the 
temporal channel explores these relationships in each time 
frame. In contrast, the spatial channel identifies intraframe 
relationships of the skeleton. STS-GCNs improve upon ST-
GCNs by including both temporal evolution and spatial joint 
interaction within one network [16]. 

III. HANDOVER RECOGNITION MODEL 

We used a publicly available data set to train our deep 
learning model to recognize handover approaches. We adopted 
an STS-GCN model that predicts future pose sequences, for 
which we then trained a binary classification model predicting 
whether the pose sequence includes a handover or not. 

A. Dataset 

We utilized 1200 handovers from the Handover Orientation 
and Motion Capture Dataset1 created by Chan et al. [14] 
recorded at 300Hz using a Vicon motion capture system. The 
handover tasks in the dataset contain 20 participants working 
in pairs in four different scenarios: natural handovers, giver-
comfort-focused, and receiver-comfort-focused, involving. 

1Available at https://bridges.monash.edu/articles/dataset/Handover 
Orientation and Motion Capture Dataset/8287799 

    

  

Fig. 2. Overview of the dataset preprocessing pipeline for forecast and 
classification dataset. 

B. Preprocessing 

The preprocessing pipeline is visualized in Figure 2. The 
datasets provide us with skeleton data of the people involved 
in the handover task in step A. In step B, we used the point 
in time where the distance between the giver’s and receiver’s 
hands was minimal to determine this transition in the recorded 
handover data. This calculation allowed us to determine in 
which frame the pre-handover phase ended and where the 
physical handover phase began. Next, we split the data into 
the giver and receiver while we subsequently excluded the 
receiver data as we only focused on human-to-robot handover 
(Step C). In step D, we performed the joint selection. In the 
following steps, we will only focus on the head, left hand, left 
elbow, left shoulder, right hand, right elbow, right shoulder, 
and torso joints. Next, we performed normalization (Step E). 
We discarded orientation data. Thus, having all givers into the 
same direction and normalized the joins. The normalization 
involved setting the torso’s coordinates to zero in the initial 
frame of each recording, with subsequent coordinates of all 
joints adjusted relative to this reference point. Finally, we 
performed data augmentation (Step F). Here, we rotated the 

A) Mocap 
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B) Handover 
Estimation
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Extraction

D) Joint 
Selection

E) 
Normalization 

F) Data 
Augmentation

G) Auto 
Labeling
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pre-handover 
phase physical handover phasetransitional phase

Fig. 3. Example sample for the model training. 

recorded handovers in steps of 90 degrees around the x-axis 
to achieve data of handovers in four different directions. We 
loaded the data for several sample rates to mitigate the effect 
of handovers performed at various speeds but with the same 
motion. In addition to the default sample rate of ten, which 
reduced the data set from 300hz to 30, we also used six, eight, 
and twelve to load the data. We reduced the sampling rate to 
30fps for the final training to support typical depth cameras, 
e.g., Intel RealSense Depth Camera D455. We used a sliding 
window approach to counteract downsampling, allowing us to 
use the frames that the downsampling would have skipped. 

Finally, we labeled the data (Step G). Here, we utilized 
the point in time where the pre-handover phase ended, and 
this physical handover phase started to categorize the data 
into three distinct classes: pre-handover phase, transitional 
phase, and physical handover phase. This phase consisted of 
450 frames, equal to 1.5 seconds, immediately preceding the 
physical transfer of the object. A resulting segment can be 
viewed as depicted in Figure 3. This resulted in 2.312.028 
total labeled samples (poses), which we used for the following 
training phases. 

C. Model Architecture 

For sequence classification, we adopted using an STS-
GCN [16] as the encoder and two dense layers for decoding 
and thus classification, see Figure 4. The STS-GCN graph 
captures the intricate interactions of body joints over time, 
leveraging a factored space-time adjacency matrix into sep-
arate spatial and temporal components to control the space-
time interplay effectively. This model architecture allows for 
joint-joint, time-time, and joint-time interactions while bot-
tlenecking the joint-time cross-talk for focused learning. We 
used two fully connected layers for the classification with a 
dropout layer, batch normalization, and activation function. 
For the full set of parameters, please see the full source 
code at https://osf.io/gn49s/. We used sequences of 10 frames, 

equivalent to 300 ms, as model input. In total, the model has 
only 47,263 trainable parameters. 

D. Training 

We implemented and trained the model in Pytorch. For 
training, we split the full dataset into training, testing, and 
validation sets of 70% (1.618.419 poses), 15%, and 15% 
(346.804 poses), respectively. We adopted an end-to-end train-
ing approach, following the practice outlined by Sofianos et 
al. [16]. We trained the model with a batch size of 32, a 
learning rate of 0.0001, and 50 epochs, after which it reached 
convergence, ensuring thorough learning and adaptability to 
classification tasks. We used ADAM [71] as optimizers. 

E. Model Evaluation 

The      92.86%  
a validation accuracy of 92.76%. This is the percentage of 
correctly classified poses in the predicted pose sequence. This 
is the first indication that no overfitting occurred. Finally, the 
classification achieved accuracy on the test set of 92.78% gain, 
confirming a stable model with this dataset. As a next step, 
we will also need to confirm if the model can be deployed in 
a real working system with new data from different devices, 
such as a depth camera for human pose estimation. 

final classification training accuracy was with

IV. USER STUDY 

With the handover classification model, we can now build a 
full robotic system to react early and late to a handover task. 
The user study was reviewed and approved by the University’s 
Ethics Committee. 

Fig. 4. The classification architecture using an STS-GCN. 

A. Study Design 

For our within-subject design study, we used five reaction 
times as conditions: Very Early, Early, Average, Late, and Very 
Late. This allows us to study the preferred timing to start the 
robot’s movement to take an object from a user for our study 
setup. Five reaction times allow us enough prediction points. 
Every participant did each condition twice, resulting in 10 
tasks. Thus, we have 10 measurements per participant (two per 
condition). Each task consisted of 4 handovers. We determined 
the task order via a 10 × 10 Latin square design [72], to 
mitigate any learning effects. We used a 1.0L Nalgene Bottle 
as a handover object, see Figure 1 and Figure 5. 

https://osf.io/gn49s/


Fig. 5. Schematic diagram of the experimental setup for the user study. 
The diagram shows the ideal system in the home position with an additional 
measurement of the participant’s distance to the robot. 

B. Apparatus 

We used the KINOVA Gen3 6DOF Robotic Arm for our 
user study and mounted it on a stand 110 cm above ground 
level. It has a maximum reach of 89.1 cm and a maximum 
speed of 50 cm/s. We attached a two-finger gripper to the 
end effector. We used an Intel RealSense Depth Camera D455 
to capture participants’ motion. We mounted the camera on 
a tripod adjacent to the robot arm so that the camera could 
see participants’ movement as un-occluded as possible, c.f. 
Figure 5. Furthermore, we used two neutral acoustic signals 
to inform participants about the robot’s state and reactions. (1) 
We gave participants the intent to hand over an object through 
a long two-second chime. This indicated that the robot started 
recording and awaiting the participants’ actions. (2) The robot 
used the same long two-second chime when approaching the 
user to communicate its intent of getting ready to receive the 
object. (3) The robot played a short one-second chime when 
closing the gripper to communicate this to the participant2 . 

We used the native Kortex API from KINOVA to control 
the robot’s movements and actions. Our main reason for not 
using the ROS implementation was the need for real-time 
interaction with the robot. For human pose tracking, we used 
Nuitrack3 , a 3D skeleton tracking middleware taking color and 
depth input from the D455 directly. We operated the entire 
system from a single computer, with the robot and camera 
directly connected. The model classifies human motions into 
handovers. Furthermore, we perform vector analysis of the 
joints from the right hand and elbow relative to the origin. 

2Without an audio signal, participants were unsure when the robot would 
close the gripper, leading to confusion. 

3Nuitrack™ skeleton tracking software, see https://nuitrack.com 

C. Task 

Each task consisted of four handovers from the participant 
to the robot. Before each handover, the robot signals that it is 

ready to receive an object via an audio signal. The participant 
then initiated the handover by grabbing an object and handing 
it to the robot. When the robot detected a handover, it would 
move with a predefined motion towards the handover position, 
closing its gripper at that position to receive the object, to then 
move the object to another table, see Figure 5. Participants 
were done with that task after they handed over four objects 
to the robot. 

D. Procedure 

First, the study conductor gave an overview and basic expla-
nation of the user study before participants gave their written 
consent to participate. The consent form included permission 
to record audio, video, and motion capture data from the 
experiment. After participants signed the consent form, the 
study conductor explained the study procedure in detail and 
performed one handover in the Average condition with the 
robot while explaining the process to the participant. We 
then instructed participants to stand on the marked position, 
maintain a relaxed posture facing the robot, and perform 
three trial handovers with their right hand once in the three 
conditions Very Early, Average, and Very Late. 

In the main study part, participants performed ten tasks, 
with each of the five conditions occurring twice. Each task 
consisted of four handovers from the participant to the robot. 
After each task, we asked them to answer a questionnaire 
on a separate PC. We took inspiration to use these ques-
tionnaires from prior work correlating social aspects with 
human-robot handovers [11], [12], see the full questionnaire 
via https://osf.io/gn49s/. First, we asked them about the dimen-
sions of warmth, competence, and discomfort by Carpinella et 
al. [17]. Second, they had to rate their perceived fluency, trust, 
and working alliance by Ortenzi et al. [13]. Finally, we asked 
about the appropriate timing through the TLTM scale [18], 
which has been shown to effectively reveal curvilinear effects 
by finding a balance between extremes. In the meantime, 
the study conductor moved all objects back to their original 
positions. Finally, after participants had done all ten tasks, we 
concluded the study with a semi-structured interview. Partici-
pants were then reimbursed with 10C for their participation. 

E. Participants 

We recruited 20 participants (9 females, 10 males, and 
1 non-binary) aged 18-37 years (M = 25.5, SD = 4.2). 
Nineteen of the participants are students or are currently 
pursuing a PhD. Twelve participants had never interacted with 
a robotic system, five 1-3 times, one participant 4-7 times, 
and two participants more than seven times. All participants 
were right-handed. The ATI scale [73] yielded a mean score of 
4.05 (SD = 0.39, α = 0.91), indicating a high overall affinity 
towards technology. Participants took 54 minutes on average 
to complete the study. 

V. RESULTS 

In the following, we present the results of our user study 
with 20 participants. Each participant performed 5 conditions 

https://nuitrack.com
https://osf.io/gn49s/


× 2 repetitions = 10 tasks, resulting in 10 tasks × 20 partici-
pants = 200 total questionnaire measurements. Each participant 
performed 4 handovers × 10 tasks = 40 handovers, resulting 
in 40 handovers × 20 participants = 800 total handovers. We 
gathered subjective ratings for the following questionnaires: 
RoSAS [17], handover evaluation questions by Ortenzi et 
al. [13], and a TLTM question regarding timing [18]. 
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Fig. 6. Distribution of time taken between users starting the task and the 
robot starting to move for each condition. 

A. Timing Quality 

We first extract the average timings for the robots’ Reaction 
Time with respect to the start of the handover, see Table I. 
We define the Robot Reaction Time as the time between 
the audio cue for the user to start the handover (intent) 
until the time the robot starts moving, see Figure 6. We 
found significant differences between the five REACTION 

conditions (Very Early, Early, Average, Late, Very Late), see 
Table II. Moreover, pairwise post hoc Wilcoxon signed-rank 
tests showed that all comparisons are significantly different 
(p < .05) but Early × Average with p = .083. This shows 
that the manipulation, aka reacting differently to the users’ 
handover, using the neuronal network classification worked 
consistently. 

We used Shapiro-Wilkinson to test the TLTM scale for 
normality and found the results to be not normally distributed 
(p < .001 for all). We then conducted Friedman tests to 
determine if the REACTION condition influenced the TLTM 
scale. We found a significant main effect of REACTION 

(p < .001). Pairwise post hoc Wilcoxon-signed rank tests with 
Bonferroni correction showed significant differences between 
Very Early × Average (p = .003), Very Early × Late (p = 

TABLE I 
THE TIME (IN SECONDS) OF THE ROBOT TOOK AFTER USERS STARTED THE 

TASK TO MOVE FOR THE FIRST TIME. 

Reaction Seconds 

Very Early (VE) 2.398 
Early (E) 3.33 
Average (A) 4.235 
Late (L) 5.156 
Very Late (VL) 6.035 
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Fig. 7. The relation between robot reaction time and TLTM score. The five 
violins indicate the distribution of the TLTM score for the different REACTION 

conditions. The solid black line indicates the linear trend line, which describes 
the change in the TLTM score across the robot’s reaction time. Finally, we can 
intersect the trend line with the “Right Time” (indicated by the dashed black 
line) to derive the red line, which is the perceived preferred robot reaction 
time at 3.38 sec. 

.005), Very Early × Very Late (p = .002), Early × Very Late 
(p = .036), and Average × Very Late (p = .014). Furthermore, 
we performed linear regression to find the intersection of 
the TLTM scale with 0 (“right time”), see Figure 7. The 
regression equation was significant, R2 = .280, R2 

Adj. = .277, 
F (1, 198) = 77.14, p < .001. The regression shows that the 
“right” time is at 3.38 seconds as indicated by the red line 
in Figure 7. This means that the most preferred timing for 
participants was 3.38 seconds after the task started. 

B. Handover Quality 

Figure 8 depicts the results for each subscale. We used 
Shapiro-Wilkinson to test for normality and found no results of 
the six sub-scales to be normally distributed (p < .001 for all). 
We then conducted Friedman tests to determine if the robots’ 
REACTION influenced the warmth, competence, discomfort, 
fluency, trust, or working alliance. 

We did not find a significant main effect of warmth, 
discomfort, fluency, and working alliance on REACTION. We 
found a significant main effect of competence on REACTION 

TABLE II 
SUMMARY OF THE STATISTICAL TESTS. 

Shapiro-Wilk Friedman test 

Measurement W p χ2 p Ken. W

Robot Reaction Time .923 <.001 60.28 <.001 .754 

TLTM Scale [18] .948 <.001 38.294 <.001 .479 

Warmth [17] .913 <.001 .477 .975 <.006 
Competence [17] .946 <.001 13.46 <.01 .168 
Discomfort [17] .919 <.001 8.643 .071 .108 

Fluency [13] .945 <.001 4.389 .356 .055 
Trust [13] .919 <.001 10.134 .038 .127 
Working Alliance [13] .901 <.001 8.481 .075 .106 



(p < .001). Pairwise post hoc Wilcoxon-signed rank tests with 
Bonferroni correction did not show significant differences. 
We found a significant main effect of trust on REACTION
(p = .038). Pairwise post hoc Wilcoxon-signed rank tests with 
Bonferroni correction showed no significant differences. 

Next, we fitted a quadratic curve through the means of each 
level from REACTION for each sub-scale and calculated the 
maxima, see Figure 9. In line with our findings on the TLTM 
scale, all sub-scales maxima are in the range from 3.333 
seconds and 4.646 seconds, meaning around the Early and 
Average REACTION, c.f. Table I. 
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VI. DISCUSSION

In the following, we discuss the applicability of our im-
plemented system, our findings regarding understanding the 
preferred reaction time for robots in handover tasks, and future 
challenges. 

A. Robustness of our Handover Detection System

We trained an STS-GCN model on motion capture data
from human-human handovers and used it to predict human-
to-robot handovers using live depth camera data. We show 
that the model works very accurately, as the distribution of 
reaction time from the robot for each level of REACTION is 
low (Figure 6), and the five levels are perceived as significantly 
different from each other except for the Early and Average 
levels (Section V-A). We note that our classification accuracy 
of 92.78% could be transferred accurately into the real world. 
Furthermore, our live pose data came from a depth camera, 
and training data came from a motion capture dataset. 

With the successful deployment of our model, we provide 
the model structure, training protocol, and system pipeline for 
public use via https://osf.io/gn49s/. 

B. Designing Preferred Robot Reaction Times

We used the TLTM scale [18] to understand the preferred
human-robot handover timing. Our results show that the 
preferred time to start the robot is 3.38 seconds after the 
task begins. Accounting for the 4.62 seconds of the robot 
movement until the handover is performed, this is a total of 
8 seconds after the user starts to reach for the object. At 
this point, the participants are typically in the pre-handover 
phase, as they have already grabbed the object, and the arm 
is approaching the handover position. The appropriateness 
measured by the TLTM scale is only one way of looking at 
the user’s perception. The other subscales give a more detailed 
view of warmth, competence, discomfort, fluency, trust, and 
working alliance. Here, we found that only competence and 
trust were significantly influenced by the REACTION condi-
tions. However, we could model the trend through quadratic 
functions, allowing us to understand better how the other 
components [13], [17] correlate with the appropriate timing 
measured through the TLTM scale. The identified maxima 
are between 3.33 seconds and 4.646 seconds (Figure 9), 
which is generally between the Early and Average REACTION

https://osf.io/gn49s/


condition. Our results indicate that designers have room to 
tune the robots toward which other components are most 
important in their specific use case. For example, if comfort is 
important, then the design can choose a slower-than-preferred 
reaction time. This will be especially important when handling 
potentially dangerous objects [41]. 

C. Limitations and Future Challenges 

A key limitation in building more robust systems is the 
lack of datasets. While some handover datasets exist, labeled 
data of movements similar to, but not handovers, is needed 
for better differentiation. Despite this, our approach using an 
STS-GCN [16] demonstrated effective classification of human 
handovers. Accurate forecasting of human motion could fur-
ther improve robustness, but better datasets are essential for 
this progress. 

In our study, we demonstrated that for our static setup 
with a robot arm, the preferred reaction timing for a robot 
receiving an object from a human is 3.38 seconds, and we 
presented an approach to determine the preferred reaction 
time. Future work should investigate whether our findings 
are generalizable to different robots in a more ecologically 
valid task using a larger sample size and in a more dynamic 
scenario, where users potentially have a secondary task and 
choose to hand over objects to the robot itself. We found that 
classifying human handovers works very well and is robust 
for the REACTION levels we chose. However, when including 
very early predictions of human handovers, there will always 
be a trade-off between people preferring faster reaction times 
and movement being detected wrongly as handover attempts. 
With knowledge about the user groups, designers can use 
our findings to determine the trade-off for their specific case. 
However, the results of our study show that the preferred 
perceived handover timing lies somewhere on the spectrum 
of our tested conditions, as the intercept of the trend line is 
within these timings, see Figure 9. 

Lastly, our preferred timing for human-to-robot han-
dovers contrasts with earlier findings on robot-to-human han-
dovers [58], [74]. Controzzi et al. [58] reported a shorter 
preferred reaction timing of 429 - 626 ms when humans 
act as receivers of objects from robots, compared to our 
longer giver reaction time. This difference may arise from 
variations in study setup, robot speed, path, or increased safety 
as giver [6], [52]. Future work should explore this contrast 
between preferred timings for humans as receivers and givers. 
Nonetheless, in both cases, participants favor predictive robot 
behavior. 

VII. CONCLUSION 

In this work, we developed a classification model based 
on an STS-GCN to classify human handovers at different 
times. With this model, we conducted a user study in which 
participants had to hand objects to a robotic arm to under-
stand the preferred handover timing from a user perspective. 
We measured the appropriate reaction timing with a TLTM 
question [18] and six sub-scales of user perception of the 

robot’s movement [13], [17]. Our contribution is threefold. (1) 
We confirmed that STS-GCNs work well to classify human 
handovers. (2) We found that the preferred robot’s reaction 
timing should be early, which in our case was 3.38 seconds 
after the handover task started. (3) We contribute a general 
approach to find the preferred reaction timing of robots when 
receiving objects from humans. Furthermore, we found that 
designers have a trade-off to adapt this timing based on their 
needs for warmth, competence, discomfort, fluency, trust, and 
working alliance for their system. 
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