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“There seems to be a solid object inside.” “What other toppings do you usually like on your pizza?”

Figure 1: We imbued a robot with curious behaviors. The figure shows two examples. Left: The robot shakes a container to

check whether there is an object inside. Right: The robot asks for the person’s preferences.

Abstract

Integrating curious behavior traits into robots is essential for them

to learn and adapt to new tasks over their lifetime and to enhance

human-robot interaction. However, the effects of robots expressing

curiosity on user perception, user interaction, and user experience

in collaborative tasks are unclear. In this work, we present a Mul-

timodal Large Language Model-based system that equips a robot

with non-verbal and verbal curiosity traits. We conducted a user

study (𝑁 = 20) to investigate how these traits modulate the robot’s

behavior and the users’ impressions of sociability and quality of

interaction. Participants prepared cocktails or pizzas with a robot,

which was either curious or non-curious. Our results show that
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we could create user-centric curiosity, which users perceived as

more human-like, inquisitive, and autonomous while resulting in

a longer interaction time. We contribute a set of design recommen-

dations allowing system designers to take advantage of curiosity

in collaborative tasks.
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1 Introduction

Curiosity is the implicit drive to seek out new information to foster

learning and decision-making and, in general, improve understand-

ing and cognition [37, 45]. In an evolutionary sense, there are evi-

dent beneficial effects for the curious person [32]. Curiosity has also

been shown to have relevant social effects on human-human inter-

action: curious people are positively perceived and generally have

healthier relationships [34, 35]. Moreover, they may be considered

more engaging and stimulating, and there is an increasing appre-

ciation of curiosity in the workplace [43]. As curiosity is a strong

driving factor for human-human interaction [27], we hypothesize

a system with a curious character (i.e., one that expresses interac-

tive user-centric curious behaviors) can also benefit Human-Robot

Interaction (HRI). Here, we differentiate between computational

curiosity and observable user-centric curious behavior. Computa-

tional learning-focused curiosity is widely being explored in AI and

robotics [6, 13, 55, 61]. However, there is a lack of research study-

ing the effect of system-based curiosity as an interaction behavior,

which can be called user-centric curiosity.

Computational curiosity mechanisms have been investigated as a

means for learning systems to extend their knowledge beyond what

was present in limited training sets through self-exploration [55, 61]

and query the user about uncertain data points as in robotic ac-

tive learning [6, 13]. On the other hand, observable curious robot

behavior in HRI has been shown to increase human curiosity in

educational contexts and foster task engagement [14, 28, 40], and

can be designed in a way that considers human comfort [6]. How-

ever, modeling deeper human social characteristics in a system

is still challenging with rule-based systems [25, 52]. Recent ad-

vancements in large language models (LLMs) and vision language

models (VLMs) have shown promising results in enhancing robot

reasoning abilities [23, 31, 53, 68, 69, 76]. Prior work has shown

how these can be used to build assistive systems with context un-

derstanding [65, 71], enabling designers to give robots a certain set

of behaviors and also a personality with character traits.

With LLMs and VLMs, we see the potential to create autonomous

systems and modulate personality traits more fluently and dynam-

ically. In this work, we used the flexibility of multimodal LLMs

(MM-LLM) to design and implement user-centric curious behaviors

into robotic systems. In detail, we investigated whether we can cre-

ate user-centric curiosity as a character trait and how users perceive

such a curious system. To understand the impact of user-centric

curiosity, we conducted a user study (𝑁 = 20). For this, we devel-

oped an autonomous MM-LLM-driven robotic system, enabling us

to generate multimodal curious behaviors and configure the robot’s

character to be “curious” or “non-curious,” while ensuring that the

robot is equally supportive and capable in both configurations. We

implemented multiple capabilities for this robot, which allowed it to

interact with humans in two collaborative tasks: Jointly preparing

pizza and cocktails.

Overall, the results of our user study show that users can dis-

tinguish the curious and non-curious robot behaviors, and our

two systems performed significantly different sequences of events.

Furthermore, when interacting with the curious system, the partici-

pants perceived it as more human-like, inquisitive, and autonomous,

and they experienced significantly higher turn-density. We did not

see any statistically significant difference between our two col-

laborative tasks (preparing cocktails or pizzas), which motivates

the need for future investigations as it suggests that the curious

traits may be generalizable across different tasks. Our work lays

the groundwork for adding flexible characters to robotic systems

in the HRI context. As such, we provide first design recommenda-

tions on how to insert specific traits into the interaction. Finally,

we provide technical details and publish our system prompts to

allow others to insert different character traits into the interaction.

In summary, the main contributions of our research presented in

this paper are: (1) Demonstrating the feasibility of implementing

curious character traits into an interactive robot based on LLMs.

(2) Providing empirical evidence that a curious robot is perceived

as more human-like, autonomous, inquisitive, and participants pre-

ferred interaction with the curious system over the non-curious

one. (3) Design recommendations based on experimental studies

for implementing robot curiosity as a character trait.

2 Related Work

Curiosity has been understood and implemented in numerous ways

in artificial systems. Here, we review related work on computational

curiosity, curiosity in HRI, how to regulate robot behavior, and how

recent advancements of LLMs advance HRI.

2.1 Computational Curiosity for AI and

Robotics

Numerous studies on robotics and artificial agents have investi-

gated computational models of curiosity as a form of endogenous

motivation to explore and, as a consequence, improve learning.

Two main areas extensively adopt the concept of computational

or artificial curiosity: Firstly, in the realm of reinforcement learn-
ing, the notion of curiosity has been acknowledged as an effective

approach to managing the agent’s tendency between exploitation

and exploration within a training environment [1, 11, 56]. Here,

computational curiosity was introduced as a rewarding incentive,

motivating agents to experiment with novel strategies or untested

paths. In general, given agents’ need for a motivational drive to

explore and expand their knowledge, the beneficial role of curiosity

is well-established within learning systems [1, 18, 46, 55]. Secondly,

the concept has been more recognized in its socially interactive

dimension by Active Learning. Here, the idea is that the system can

actively sample uncertain data or parameters to query a human

annotator/tutor or to explore by itself, which can translate to a

form of curious questioning [13].

To summarize, computational curiosity has mainly served as

the intrinsic motivation behind active learning and reinforcement

learning, driving the agent or algorithm to 1) explore new environ-

mental states and 2) minimize uncertainty, hence as a functional

module for the agent cognition, while our focus here is more on

the design and effects of external expressions of curiosity.

2.2 Curiosity in Human-Robot Interaction

While there has been extensive research on embedding curiosity

in computational models and machine learning, research on how

robot curiosity affects HRI is limited. However, a robot exhibiting

curiosity can benefit from interaction with humans and vice-versa.
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Understanding human perceptions of robots is essential for their

long-term acceptance [49, 70]. Hence, it is important to examine the

value of a curious robot for the end user. Prior work on perceptions

of curious robots can be divided into on-service and off-service,

depending on whether the robot engaged in a service task for a

human. In off-service scenarios, where the robot is not carrying

out any service task but rather is learning about it, curiosity mech-

anisms can facilitate the robot’s acquisition of new knowledge by

observing or querying humans. Acquiring new knowledge may ul-

timately benefit users by enabling the robot to perform novel tasks

over time. In the active learning community, numerous studies on

HRI focus on enhancing the interaction to encourage humans to

provide more labeled data for training robots [6, 12, 13, 51]. How-

ever, these studies primarily target curiosity for active learning and

consider the user’s perspective only concerning their comfort (i.e.,

minimizing their difficulties or nuisance) when teaching the robot.

To the best of our knowledge, very few studies investigated

the human perception and expectations of curious robots beyond

learning contexts, that is, during their regular functions. In such

contexts, there is the additional challenge that the robots need to

balance task-related and non-task-related exploration behaviors.

Walker et al. [70] showed that off-task investigative behavior during

prescribed tasks was recognized as curious but led to negative

perceptions of the robot. The authors suggest that appropriate

explanations from the robot could mitigate this issue. However, this

study was conducted through online video investigations without

actual interaction. In social robotics, curiosity has been used to

shape HRI by eliciting beneficial effects on the human side, e.g.,

stimulating student’s curiosity in educational or game settings [14,

28, 58]. Law et al. [40] used a recycling game to test the effect of

the robot’s unpredictable behavior on the user. In all such cases,

the human partners were affected by the robot’s behavior and

demonstrated increased curiosity, both in the robot and in the task.

In conclusion, there is a lack of systematic research on the per-

ception of curious robots in non-teaching environments and con-

sidering real-world collaborative tasks. One core challenge is to

integrate user-centric curiosity into an autonomous system, com-

bining high-level action planning and low-level world manipulation

with curious behavior.

2.3 Regulating Robot’s Curious Behavior

The purposes for creating curious behavior vary, from learning

from humans to providing service to them. In general, there are

two approaches to regulating a robot’s curious behavior. In model-
based approaches, the idea is to control the robot’s curious behavior
via computational models [6, 51, 58, 70]. Here, the majority of work

focuses on improving querying strategies for robots to learn more

efficiently. Often, a certain behavior aspect is picked and modeled

to improve the learning capability through curiosity for the specific

domain [6, 51]. These applications rarely also incorporate how the

robot should best interact with the user. However, Rosenberg et al.

[58] presented an architecture that considers modules for both arti-

ficial curiosity and social expressivity, hence jointly estimating its

learning needs and how to communicate with its human partners

with verbal and non-verbal cues. In the context of service robot-

ics, Walker et al. [70] proposed a reward function that integrates

both the intrinsic motivation to gain information and the extrinsic

rewards (completing the service task), to balance robot curiosity

and user experience. They implemented the function on a mobile

robot whose primary task is to gather information in a room upon

instruction by the user. By tuning the reward value in different

categories, the robot would either only collect the information that

the user required or explore the environment more out of curiosity.

The second approach utilizes rule/template-based approaches to
regulate curious behavior to study user acceptance. In such cases,

the curious behavior consists prevalently of verbal behavior by

asking questions [5, 13, 14]. Cakmak and Thomaz [13] found that

robots should best ask feature-relevant and closed-form questions

to maximize the perceived intelligence of the robot. Belardinelli

et al. [5] found that the robot showing learning progress from asked

questions makes it be perceived as more engaging. Ceha et al. [14]

used on-topic questions in a Wizard-of-Oz study and found that

task-related questions are perceived as curious. However, in all

these experiments, the task flow is rule-based, and participants

could only follow the interaction flow guided by the robot.

In summary, the curious behavior produced by action-learning

approaches tends to focus mainly on single query tasks and lacks

a complete interaction loop. In most cases, the robot will stop in-

teracting after gathering information from the human rather than

providing further services. On the other hand, while rule-based

curious robots can follow a certain interaction flow for multi-turn

conversation, they struggle with adapting to flexible scenarios and

achieving dual goals - maintaining a curious character while com-

pleting the service task. As a result, more work needs to be done

to evaluate the acceptance of a curious robot implemented in real-

world interactive settings.

2.4 Regulating Human-Robot Interaction via

LLMs/MM-LLMs

Recent advancements in LLMs have demonstrated impressive capa-

bilities across various domains, including chatbots, data processing,

and code generation, and are now beginning to show their po-

tential in robotics [23, 31, 53, 68]. As it is a longstanding problem

to design multimodal communicative robot behavior to elicit an

enjoyable and natural interaction with the user [8, 60], many re-

searchers have employed LLMs in HRI to tackle the limitations of

previous rule-based systems and enabling context-aware interac-

tion. Currently, both academia and industry are investigating how

LLMs can be leveraged to push for more context-aware and natural

HRI [21, 38, 48], which leads to this field rapidly evolving. For ex-

ample, LLMs are being used to generate robot motions [47, 77], pro-

cessing human language input to control the robot [75], multi-turn

interactions [2, 78], or contextual action planning [65]. However,

current explorations still often restrict themselves on generating

single robotic expressions and are not integrated into multi-turn

autonomous robots.

The option of having such fully autonomous systems, dynami-

cally reacting to any user input, opens up the field to novel research,

going away from investigating and comparing singular-catered ro-

bot expressions to more open-ended full interactions. Previously,

the challenge with rule-based systems was that the system could
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CHARACTER CAPABILITIES

MM-LLM AGENT OPEN-WORLD

PERCEPTION
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image
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 EXPRESSIONS

speak point object head-ear 
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 MANIPULATION
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Basic 
Information

Behavior 
Guidance

Task 
Guidance, 
Examples

“There seems to be a 
solid object inside.”

Figure 2: The system with our curious character utilizes available capabilities to engage with the surroundings. The MM-LLM

agent can actively employ functions to capture images, communicate intentions through speech and facial expression, and

manipulate items.

not easily handle unexpected user input. LLMs give the capability

to handle any user response in a context-fitting way.

While there is a large body of work on creating functional curios-

ity for systems [1, 18, 46, 55], and also some work on using LLMs

to create expressive characters [63, 72], to the best of our knowl-

edge, no one has tried to use LLMs to generate curious behavior

for robots and investigated user perception of such user-centric

curiosity through an autonomous system.

In summary, while the integration of LLMs/VLMs in HRI shows

promise, the field remains in its early stages.While most approaches

are at the system implementation stage, there is a lack of systematic

studies from an HRI perspective to investigate whether robotic be-

havior aligns with the designer’s intent and is perceived as intended

by users.

3 Designing and Implementing a Curious Robot

To explore user perceptions during interactions with a curious ro-

bot, we used a physical robotic system with sensors, actuators, and

an MM-LLM-driven behavior architecture [65]. Figure 2 presents a

description of the system. This allows us to design the robot’s be-

havior using character descriptions and equips it with both physical

and non-physical capabilities to react to situations and manipulate

its surroundings. Based on the character-description and capabil-

ities, the MM-LLM agent adjusts dynamically to human verbal

inputs as well as to human actions. When a human provides input,

the agent uses its abilities to react to the current context, communi-

cate efficiently with users, and perform physical tasks, displaying

either curious or non-curious behaviors. We describe our system as

an autonomous robot capable of user-interactive error resolution,

designed to execute and adapt its plans independently.

3.1 Robot Platform

We employed a bi-manual robotic system equippedwith two Kinova

Jaco Gen2 arms, each with seven Degrees of Freedom (DOF) and

three-finger hands, a pan-tilt unit, and a custom-designed head fea-

turing gestural DOFs for ear and eyelid movements (Figure 3). The

system captures human postures and object images using an RGBD

camera (Azure Kinect). The system records speech input via a mi-

crophone and transcribes it with an automatic speech recognition

system
1
. These perception components work together as multi-

modal inputs for the LLM. As an MM-LLM, we employed OpenAI’s

gpt-4o-2024-05-13with tool usage through the Python package
2
.

To ensure reproducibility, we set the temperature to 1𝑒−8.

3.2 Robot Capabilities

The system’s capabilities are provided to the LLM as an API, struc-

tured into several categories that facilitate interaction with both

the physical and social environment. These capabilities enable the

AI models to interpret, act, and communicate in HRI scenarios.

Visual Perception Capabilities: Enable the MM-LLM to query

the environment and gather contextual information. For example, a

VLM can check if persons or objects are present, if a bottle is empty

or full, etc. We utilize fiducial markers (ArUco) [26] markers to

detect the pose and identity of objects, enabling more accurate ma-

nipulation. The RGB image is employed solely for object detection

and as input for the MM-LLM.

Manipulation Capabilities: Enable the system to perform

physical tasks, such as passing an object to a person or pouring a

liquid from one container to another. These functionalities enable

1
https://cloud.google.com/speech-to-text

2
https://github.com/openai/openai-python

https://cloud.google.com/speech-to-text
https://github.com/openai/openai-python
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Figure 3: Components of the robot: 1. Azure Kinect camera; 2. Robot head featuring a movable neck, eyelids, and ears, enabling

various facial expressions; 3. Directional microphone surrounded by an LED ring indicating the robot’s status: white means

speech input is disabled, green means the robot is idle and ready to receive speech input, and red signifies that the robot is busy

processing and cannot accept speech input. 4. Robotic arm and hand.

the robot to physically interact with its surroundings. Importantly,

some of the functions are designed to show curious traits, such as

inspecting objects by poking them, gazing at objects, or pointing

at objects while asking a question.

Expression Capabilities: Enable the robot to communicate and

express itself. The robot can speak to users, provide explanations

of its actions, or engage in more complex social behaviors, such as

expressing emotions via facial expressions or hand gestures. The

MM-LLM could control head motions (including the ears and eye-

lids) with predefined animation sequences; however, this extends

prompt length and increases response time. Thus, we utilized a

rule-based method to produce head motions that align with the

robot’s actions (see supplementary material). However, all speech

and other physical expressions are generated by the MM-LLM.

Feedback Capabilities: We implemented a feedback mecha-

nism that activates after the LLM performs an action. If the action

can be executed, the robot’s low-level control module confirms suc-

cess; if not, it gives feedback detailing the error and provides reasons

and suggestions in a structured, rule-based natural language format.

For instance, if the robot attempts to place a container directly on

the pizza, the control module might respond with, “Issue 0: I can’t

put the unknown_container_2 on the pizza_dough_flat because it

does not support it. Suggestion: Specify another object to put it

on.” This feedback is then sent back to the GPT-4 API for further

high-level planning adjustments. See the supplementary material

for detailed information about the functions and their arguments.

3.3 Robot Character

The high-level robot behavior is provided to the MM-LLM in natu-

ral language as a system prompt. The description has three sections:

(1) basic information, (2) behavior guidance, and (3) task guidance.

In the following, we provide snippets of each section; see the sup-

plemental material for the full prompts.

The first section of the prompt gives the system basic information

about its purpose, character, and some essential details (e.g., its

name).

(1) Curious Robot Character Basic Information

[...] You are Johnny, a helpful humanoid robot who has the curiosity of
a little child. You have access to functions for gathering information
about your environment, acting physically, and interacting with the
user. [...]

The second section provides the system with behavior guidance

and high-level rules for interacting with objects and humans, such

as always informing people of its intentions before taking action

or, depending on its character, either efficiently completing tasks

or exploring objects out of curiosity.

(2) Curious Robot Character Behavior Guidance

[...] Never call yourself a curious robot. Never ask if the person
has all the ingredients ready. Figure that out yourself. Always answer
to any request or question from the user. Your first priority should
always be to do what the person wants. Your second priority is being
curious, which you can do through the following two things: 1. asking
task-related questions and 2. doing curious exploration of objects.
[...]

The third section provides task and concrete guidance on us-

ing different capabilities, such as how to gather environmental

information.

(3) Curious Robot Character Task Guidance

[...] 1) If a person appears for the first time, take an image using
’get_image_of_person’ and greet them happily and ask for their name.
IMPORTANT: Use ’stop’ function to wait until user give you the name,
otherwise do not continue the task. 2) After the user responds, use
’get_image_of_scene’ to figure out and guess what the person wants to
do today and respond to the person, telling them how you think you
can help. 3) Tell the person you are happy to help them and propose
a plan. 4) Collect visual information to identify the unknown object
using ’get_image_of_object’. Use ’speak’ during the action to inform
the user what you are doing during the movement. [...]
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Table 1: The robot’s curious behaviors.

Behavior Curious Behavior Description

Social

Asking for name

When a new person appears for the first time, the robot will look at the person, greet them

and ask for their name.

Asking about the task

Based on visual scene information, the robot proposes actions and a goal. It also asks about

all objects it observes it does not know.

Asking about preferences

After the robot finishes a task, it may ask follow-up questions based on the interaction

history.

Information

Gathering

Shaking

To investigate the content of a container, the robot can pick the container up and shake it,

and hear what kind of object is inside.

Poking

To investigate whether an opaque container still has content inside, the robot can poke the

object to check its weight.

Looking Inside

The robot can pick a container up and move it in front of its face to look inside. It then

takes a picture and a VLM returns what is inside.

Expressive

Looking at object of interest The robots gaze will focus on the object it is thinking about or planning to interact with.

Looking around When idle, the robot may observe objects around it randomly.

3.4 Curious System Behavior

To determine which curious behaviors to implement, we explored

both the psychological literature on human curiosity and prior

works on curious robots. In the psychological domain, curiosity

can be categorized into three distinct types: epistemic curiosity

(acquiring new knowledge) [44], perceptual curiosity (responding

to environmental stimuli) [19], and social curiosity (interest in

people) [57]. To employ user-centric curious behavior, we chose

curious traits inspired by cues and behaviors displayed in previous

works (such as poking [78] or querying [13, 22]) and designed new

behaviors (such as shaking), see Table 1.

We provide the MM-LLM with all the capabilities together with

the initial prompt. During each interaction, the autonomous system

dynamically reacts to user input and the environment. In each

situation, the system decides how to continue the interaction based

on the contextual information. This can lead to each interaction

with the system being potentially unique.

4 User Study

We conducted an in-person user study (𝑁 = 20) to investigate

whether we can modulate the perceived curiosity of a robot when

changing its Character (curious and non-curious) through an LLM

system prompt across different Scenarios (cocktail and pizza) and
to assess the impact of the character on the participants.

4.1 Study Design

We designed the study with two independent variables, Charac-

ter and Scenario. We varied the robots’ Character in a within-

subjects design. Thus, every participant saw both the curious and
non-curious Character of the robot in two trials. We used a Latin

square to balance the order in which participants interacted with

both Characters. We varied the Scenario in which participants

interacted collaboratively with the robot with two levels, cocktail
and pizza, in a between-subjects design. The two Characters, i.e.,

the two LLM system prompts, and also the robot’s capabilities are

independent of the Scenario. We use two different scenarios to

mitigate any Scenario-dependent effects.

4.2 Tasks

We created two Scenarios in which the participants collaboratively

created either a pizza or a cocktail with the robot. In both Scenar-

ios, the general setup was the same, and we provided four objects
3
.

For the pizza Scenario, we provided (1) rolled-out pizza dough, (2)

grated cheese inside a transparent container, (3) tomato sauce in

an opaque container, and (4) mushrooms in an opaque and closed

container. For the cocktail Scenario, we provided (1) a glass, (2)

tonic water inside a transparent bottle, (3) gin in an opaque bottle,

(4) a lemon slice in an opaque and closed container. The robot had

full information about objects (1) and (2), knew about the object

(3) but not whether there was still fluid inside, and did not know

the content of (4). We placed all objects, except for the unknown

container, in designated spaces for each participant to ensure that

the robot could reach all the objects. We gave the unknown con-

tainer to the participants and asked them to place it into the scene

whenever and wherever they liked.

The primary goal for the participants was to create either a

mushroom pizza or a gin and tonic with the robot. We informed the

participants that they could achieve this however they wanted. The

task was considered successfully completed when they achieved

this, and the robot did not ask the user any further questions.

4.3 Apparatus

We used the robotic system described in Section 3 for our user study.

We used a PC running Linux to control the robot and the study. We

used an additional laptop on which the participants could fill in the

questionnaires. The study setup is depicted in Figure 3 and Figure 4.

3
The food items were partly look-alike objects to be re-used and not wasted in the

study.



Investigating LLM-Driven Curiosity in Human-Robot Interaction CHI ’25, April 26–May 01, 2025, Yokohama, Japan

“There seems to be a solid object inside.”

“Could open the container for me?” “There is a lemon slice inside.”

“What is your name?”

“I wonder whether it is empty.”

"Do you usually like lemon in your gin and tonic?"

“Are we going to prepare a cocktail?”

 Asking Name  Asking About Task Looking Around

 Poking Object  Shake Object

 Asking Preference Asking for help  Inspect Object

 Pouring Liquor

Figure 4: An illustration of an interaction sequence with the curious robot. 1. Prior to a human entering the scene, the robot

looks around the objects on the table with curiosity; 2. When a person appears, the robot greets them and asks for their name;

3. The robot inquires about the next task based on the visible objects, and the person instructs it to make a gin and tonic; 4.

Before using the gin, the robot pokes the non-transparent gin container to check for emptiness; 5. The robot pours the gin

into a glass; 6. The robot shakes the non-transparent container out of curiosity; 7. The robot requests the person to remove

the cap as it cannot do so itself; 8. After the cap is taken off, the robot grasps the container and inspects its contents; 9. Upon

discovering the ingredient, the robot asks the person for their preferred ingredient and adds it to the drink.

We placed the robot on one side of the table and asked participants

to sit across from it in a designated chair. We marked the field of

view of the robot’s camera and asked participants to stay outside

of this area until the study started. The study conductor sat at the

control PC with direct access to an emergency stop button for the

robot. From here, the study conductor could also start and stop the

study task and control the microphone.

We designed the system as an autonomous system, and partici-

pants could interact with the robot using natural language. We used

an LED ring (see Figure 3) to show the status of the microphone

used to communicate with the robot. When the LED ring was red,

the microphone was not active, and the robot was busy planning

or performing an action. If the LEDs were green, the microphone

was active, and the robot was listening for a user response. A white

LED indicated that the participant successfully finished the task.

4.4 Procedure

Following a high-level introduction about the study and robot, we

asked participants to give their informed consent and fill out a

demographic questionnaire, the Affinity for Technology (ATI) ques-

tionnaire [66], and the Negative Attitude Towards Robots (NARS)

questionnaire [64]. We then demonstrated how to interact with

the robot and explained details such as when and how participants

could communicate with the robot, where the robot could reach,

and that they should right any objects that fall over. Afterward,

participants interacted with the robot in the tutorial scene and

notified the study conductor when they felt comfortable. We then

proceeded to the main part of the study.

In the main study section, participants performed one Scenario

task with the two different Characters. After starting the study

application, we asked participants to sit down on a dedicated seat

in front of the robot. They could then freely interact with the robot
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to accomplish their task. We prompted the participants that their

task was to collaboratively create either a pizza or a gin and tonic

with the robot. We did not give any constraints on how they should

interact with the autonomous system and also did not impose any

time limit
4
. As soon as the participant accomplished their task, the

study conductor turned the status LED white, indicating that the

task was complete. Participants then filled in the questionnaire on

a separate computer. The study conductor then set up the next task.

The procedure of the second task was exactly the same but with

the second Character. Finally, we conducted a semi-structured

interview and thanked the participant for their participation.

4.5 Measures and Analysis

We used the Perceived System Curiosity Scale (PSC) [42] with

its three subscales Perceived Explorative Curiosity (𝑃𝑆𝐶𝐸 ), Per-

ceived Investigative Curiosity (𝑃𝑆𝐶𝐼 ), and Perceived Social Curios-

ity (𝑃𝑆𝐶𝐸 ) to measure how curious the participant perceived the

robot, the Godspeed questionnaire with all subscales to measure an-

thropomorphism, animacy, likeability, perceived intelligence, and

perceived safety [4], the System Usability Scale (SUS) [9], the raw

NASA-TLX questionnaire [29] to measure perceived workload, and

some additional questions to understand the interaction. We used

Python and R to process and statistically analyze this data.

We also stored the complete interaction data received and sent

from the LLM agent from both the robot and user. We grouped the

robot action groups into four high-level event types: doing (physical

actions performed by the robot), speaking (verbal communication),

thinking (waiting for the user responses and processing them), and

failing (when the robot could not find a successful action plan and

had to either find a different plan or ask the user for help). For the

users, we gathered all transcribed utterances and categorized them

into speaking events. We then used Python and R to statistically

analyze this data.

Lastly, we collected qualitative feedback via exit interviews. We

asked participants about their experience, preferred system, the

main difference between the systems, whether they found one

system to be more curious, which properties and behaviors they

identified as curious, suggestions for improving curious expressions

in the system, and potential use cases. We recorded and transcribed

all interviews and used Atlas.ti
5
to analyze the resulting transcripts

in a process aligning with Blandford et al. [7]. As a first step, two

researchers independently coded a representative sample of 18%

of the material (4 interviews). Four researchers then discussed the

codes and agreed upon a code book and higher-level themes. Lastly,

one researcher coded the remaining interviews and discussed the

results with the other researchers.

4.6 Participants

We recruited 20 participants (4 female, 16 male) via convenience

sampling. As robots will become ubiquitous in the future and we

wanted to focus on the perception of the interaction with the robot

and not the robot itself, we aimed to recruit people with high

technical affinity and, in the best case, HRI experience, to reduce a

potential novelty bias from people seeing a robot for the first time

4
We designed the task to take around 5-10 minutes.

5
https://atlasti.com/

in the study. On average, participants were 37.9 years old (𝑆𝐷 =

10.5,𝑚𝑖𝑛 = 22,𝑚𝑎𝑥 = 62). Six participants had a doctoral degree,

eleven had a master’s degree, and three had a bachelor’s degree.

Participants came from nine different nationalities. All participants

spoke fluent English. Their affinity for technology score using the

ATI questionnaire [66] was 4.39 (𝑆𝐷 = 0.84). We used the NARS [64]

questionnaire to to measure participants negative attitude towards

(S1) interaction with robots (𝑀 = 2.28, 𝑆𝐷 = 0.37), (S2) social

influence of robots (𝑀 = 2.61, 𝑆𝐷 = 0.55), and (S3) emotions in

interaction with robots (𝑀 = 2.97, 𝑆𝐷 = 0.99). Ten participants

previously interacted with robots more than 7 times, three 1-7 times,

and seven never. Here, eight participants named robot arms, six

named humanoid robots, and five named social robots.

5 Results

In the following, we first performed manipulation checks to show

that the two Characters behaved differently. Then we present our

results from the questionnaires and the exit interviews.

5.1 Quantitative Interaction Data Analysis

For each participant, we logged the whole interaction between the

system and the user. We then processed this data, see Section 4.5.

This includes speech data for the user and robot, and the actions

performed by the robot. The interactions with the curious system
took 9:55 min (𝑆𝐷 = 2:45) on average and 6:39 min (𝑆𝐷 = 1:56)

for the non-curious system. Our manipulation checks show that

the curious Character behaved significantly different than the

non-curious Character, but not different across the two Scenarios.

5.1.1 Event State Transitions. To compare whether the system be-

haved differently, we modeled the sequences of events in our study.

For this, we constructed normalized transition matrices for each

combination of Character × Scenario for each participant, see

Figure 5.We then conducted aMANOVA usingCharacter and Sce-

nario as the independent variables and participant IDs as a random

effect, and the transition matrix elements as dependent variables.

We found a significant main effect of Character (𝐹 (1, 12) = 7.784,

𝑝 < .01, 𝑃𝑖𝑙𝑙𝑎𝑖′𝑠 𝑡𝑟𝑎𝑐𝑒 = .921). This indicates that the curious Char-
acter performed significantly different state transitions than the

non-curious. We did not find a significant main effect of Scenario

(𝐹 (1, 12) = 1.997, 𝑝 = .183, 𝑃𝑖𝑙𝑙𝑎𝑖′𝑠 𝑡𝑟𝑎𝑐𝑒 = .774). This indicates that

the robot did not do significantly different state transitions across

the two scenarios. Taken together, these two results validate our

manipulation. The robot behaved differently based on its character

and not the scenario.

5.1.2 Turn Taking Analysis. We calculated the turn density (num-

ber of actions per actor turn) and interactivity (number of actor

changes per minute) between the robot and the human [59], based

on our logged robot interaction data. Both turn density and inter-

activity are normally distributed (𝑊 = .958, 𝑝 = .141 and𝑊 = .974,

𝑝 = .487 respectively). We conducted t-tests to test for significant ef-

fects of Character and Scenario on turn-density and interactvity.
For Character, we found a statistically significant effect on turn-
density (𝑡 (19) = 5.539, 𝑝 < .001), but not an effect on interactivity
(𝑡 (19) = .535, 𝑝 = .596). For Scenario, we did not find statistically

https://atlasti.com/
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Figure 5: Substracted state transition matrices for both Sce-

narios substracting the non-curious Character transitions

from the curious Character transitions. One field describes

the difference between the two Characters for one transition
type. Positive (green) values mean that the curious Char-
acter performed this transition more often than the non-
curious. E.g., The curious system had 11% fewer “Doing” to

“Failing” event state transitions than the non-curious system.

significant effects on turn-density (𝑡 (19) = .836, 𝑝 = .408) or in-
teractivity (𝑡 (19) = −.178, 𝑝 = .860). On average, the interaction

between the user and the curious system had 2.64 turn per minute

and 2.14 for the non-curious system, see Figure 6c and Figure 6d.

Thus, the curious system performed significantly more actions in

one turn than the non-curious system, as it more often chained mul-

tiple actions together, e.g., first observing the environment, then

asking a question, and lastly physically exploring the object.

5.1.3 Robot and User Utterance Analysis. To analyze whether the

Character had an influence on the utterance of the robot and

user, we performed sentiment analysis on all robot utterances and

all user utterances. For each interaction participants had with the

robot, we then calculated the percentages of positive and negative

utterances the robot did, see Figure 6a, and the same for the user, see

Figure 6b. The data was not normally distributed (user-sentiment:
𝑊 = .857, 𝑝 < .001, robot-sentiment:𝑊 = .871, 𝑝 < .001). We

conducted ART ANOVAs and found no significant main effect

for user-sentiment (𝐹 (1, 58) = .612, 𝑝 = .437) nor robot-sentiment
(𝐹 (1, 59) = 2.870, 𝑝 = .096). Thus, while both the robot and user

had more positive sentiment in their utterances in interaction with

the curious system, we did not find significant differences.

5.2 Questionnaire Results

We tested each subscale for normality using Shapiro-Wilk normality

tests. We conducted mixed-design ART ANOVAs [24, 36, 73] for all

non-normally distributed scale results and mixed-design ANOVAs

for all normally distributed data using the R package ez [41] to

find significant effects for our independent variables Character

(within-subjects) and Scenario (between-subjects), see Table 2.

5.2.1 PSC. We found a significant main effect for Character on

all PSC subscales (explorative, investigative, social) and the total

scale, see Table 2 and Figure 7a. We found no significant main

effect of Scenario and no interaction effects. Thus, the curious
character was perceived as significantly more curious (explorative,
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Figure 6: Boxplots comparing system and user behavior met-

rics between the curious (green) and non-curious (yellow)

characters. The plots show distributions of positive senti-

ment utterances, actions per turn, and actor turns perminute,

highlighting key differences in sentiment expression and be-

havior dynamics.

investigative, social) as the non-curious system and we found no

statistically significant difference between the Scenarios.

5.2.2 Godspeed. The data for all godspeed subscales (anthromopo-
morphism, animacy, likeability, perceived intelligence) except for per-
ceived safety are normally distributed. There was a significant main

effect of Character on anthropomorphism. We did not find a sig-

nificant main effect for Scenario and no interaction effects. There

was a significant main effect of Character on animacy. There was
not a significant main effect on Scenario and no interaction effects.

There were no significant main effects of Character or Scenario

on likeability, but we found significant interaction effects. We con-

ducted t-tests on both scenarios independently to find whether

the Character had an effect on likeability for each scenario and

found a statistically significant effect for the cocktail Scenario
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Table 2: Results of the statistical analysis of all questionnaires.

Normality Character Scenario S × C

W p F p 𝜂2 F p 𝜂2 F p 𝜂2

SUS [9] .983 .808 1.193 .112 .002 1.194 .289 .047 1.011 .328 .014

raw NASA-TLX [29] .976 .526 .006 .938 <.001 .659 .427 .029 9.861 <.01* .087

PSC

Expressive .971 .399 7.944 <.05* .084 .148 .705 .006 .694 .416 .008

Investigative .945 .051 14.896 <.001* .242 .304 .588 .01 3.465 .079 .069

Social .954 .104 28.666 <.001* .296 .005 .946 <.001 .956 .341 .014

𝑃𝑆𝐶 .951 .08 21.398 <.001* .240 .002 .962 <.001 2.268 .149 .032

Goodspeed [4]

Anthropomorphism .972 .402 4.52 <.05* .037 .132 .72 .006 .984 .334 .008

Animacy .966 .274 10.166 <.01* .116 .638 .435 .026 .189 .669 .002

Likeability .97 .357 4.085 .058 .049 .011 .916 <.001 5.208 <.05* .062

Perceived Intelligence .974 .463 .474 .5 .013 .464 .504 .013 .303 .588 .008

Perceived Safety .922 .009 4.15 .057 .187 .441 .515 .024 .416 .527 0.023
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Figure 7: Boxplots of questionnaire results per Character. From left to right: (a) PSC with the three subscales: 𝑃𝑆𝐶𝐸 , 𝑃𝑆𝐶𝐼 ,

𝑃𝑆𝐶𝑆 , (b) Godspeed with the five subscales: anthropomorphism, animacy, likability, perceived intelligence, perceived safety, (c)

SUS, and (d) raw NASA-TLX.

(𝑡 (9) = 2.906, 𝑝 < .05), but not for pizza (𝑡 (9) = −.194, 𝑝 = .850).

We did not find any main or interaction effects of Character and

Scenario for perceived intelligence or perceived safety. See Table 2
and Figure 7b. Thus, the curious system was perceived as signifi-

cantly more anthropomorph and animate.

5.2.3 SUS. We found no statistically significant effects for SUS;

see Table 2. The overall score was high with a mean of 69.125

for the curious condition and 68.250 for the non-curious condition;
see Figure 7c. Indicating that both the curious and the non-curious
systems had an overall “good” score based on Brooke [10].

5.2.4 Raw NASA-TLX. Our results of the raw NASA-TLX are nor-

mally distributed. We found that the main effects Character

and Scenario are not statistically significant; see Table 2 and Fig-

ure 7d. However, we found statistically significant interaction ef-

fects. We conducted t-tests on both scenarios independently to

find whether the Character had an effect on perceived workload
for each scenario and found a statistically significant effect for

the cocktail Scenario (𝑡 (9) = −2.272, 𝑝 < .05), but not for pizza
(𝑡 (9) = 2.169, 𝑝 = .582).

Moreover, none of the individual raw NASA-TLX questions

results are normally distributed data. Thus, we conducted ART

ANOVAs to examine the effect of Character and Scenario on

mental demand, physical demand, temporal demand, performance,
effort, and frustration. We did not find any significant main or inter-

action effects for all questions except for effort. For effort, there was a
significant main effect of Character (𝐹 (1, 18) = 5.138, 𝑝 < .05), in-

dicating that participants perceived more effort interacting with the

curious system (𝑀 = 6.40) than the non-curious system (𝑀 = 4.85),

no significant main effect of Scenario (𝐹 (1, 18) = 1.138, 𝑝 = .300),

and a significant interaction effect between Character and Sce-

nario (𝐹 (1, 18) = 4.586, 𝑝 < .05).
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5.3 Interview Results

In the following, we present the results of the interviews according

to the identified themes.

Preferred System. We asked all participants which system they

preferred. Most (70%) preferred interacting with the curious sys-

tem, while 20% preferred the non-curious system, and 10% had no

preference. Participants who preferred the curious system noted

that it felt more empathetic (P18) and frequently mentioned that

they enjoyed that the system felt more interactive and natural:

“It was more personal. It interacted more, in a way, more
humanistic [...] Even though it’s a robot, it felt more
natural” (P9)

Those who preferred the non-curious system mentioned that the

additional questions asked by the curious system were inefficient

and distracting from the main goal of the task, while the non-

curious system, “in terms of achieving the goal, is more efficient” (P4).
One participant noted that, in general, he interacts with robots to

accomplish tasks rather than to be social:

“I’m not interacting with the robot to be friendly with
them. I’m interacting with the robot to get something
done.” (P1)

Perceived Difference Between Systems. We asked participants

to identify the main differences they perceived between the two sys-

tems at the beginning of the interview. We identified nine themes,

which we grouped into three categories: human-like, curious, and
autonomous, shown in Table 3. The themes are framed positively

from the perspective of the curious system (i.e., the main difference
is that the curious system is more X ). The human-like category incor-
porates social and anthropomorphic elements, the curious category
includes specifically curious or inquisitive behaviors, and the au-
tonomous includes references to the system acting on its own and

explaining its actions.

Perceived Curiosity. Nearly all participants (90%) perceived that

the curious system was more curious than the non-curious one.

One participant perceived the non-curious system as more curious,

and one could not differentiate. In the case of the one participant

who perceived the non-curious system as more curious, their non-

curious condition had an uncharacteristically high number of sce-

narios where the robot could not reach an object. These scenarios

led to the non-curious system asking the participant for help on

multiple occasions.

Observed Curious Behaviors. The behaviors that participants
identified as curious can be broadly categorized into three groups.

Social behaviors were mentioned by 90% of participants, while

60% noted perceptual exploration and 40% mentioned task-related

questions.

Social interactions were the most frequently mentioned curious

behavior. The participants noted that the system asked non-task-

related social questions, saying that it “wants to know my name, it
wants to know my preferences” (P2). These social interactions were
interpreted as “much more natural in conversation” (P9).

Most participants also noted that the system appeared curious

when it explored the environment perceptually. In particular, par-

ticipants noted moments when the robot was visually inspecting

Table 3: The main differences between the systems reported

by the participants at the beginning of the interview. The

themes are framed from the perspective of the curious sys-

tem (i.e., The the main difference is that the curious system is
more X).

Category Theme Count Total

Human-Like

Social 6

16

Human 4

Interactive 5

Friendly 1

Curious

Questioning 5

9Explorative 3

Curious 1

Autonomous

Explanatory 5

9

Proactive 4

the environment, saying that the “gaze behavior was more active
[...] it gave more of an impression that it’s scanning the environment,
considering” (P13). They also mentioned instances when the robot

poked or shook objects to learn more about their contents:

“He immediately was interested [in] what’s in the hid-
den container to see what’s inside there, and really point-
ing at it, shaking it.” (P10)

Finally, participants also noted that the system appeared to be

curious when it asked task-related questions, such as inquiring

about objects or identifying unknowns in the environment. For

example, participants noted that the system appeared curious when

it “asked what was in the container” (P5) Some participants perceived

this questioning to be tied to a desire to learn, saying “it tries to
learn, tries to adapt, and it also asks questions” (P4).

In all, social interactions, perceptual exploration, and asking

task-related questions were the most frequently noticed curious

behaviors.

Properties of a Curious System. Beyond individual behaviors,

participants perceived characteristic properties that were indica-

tive of a curious system. Specifically, participants most frequently

mentioned that the system appeared curious when they perceived

that it was motivated to learn by “exploring the environment” (P4)
and unknowns:

“It went for the unknown object by itself without me
having to ask [...] It also interacted with the novel object.”
(P10)

Participants also perceived the properties of asking questions

and trying to learn from the user as curious. They reported that

the system “was trying to learn from me” (P9). Overall, they noted

that when the system asked them questions, it felt more human:

“He was asking me to do something or to explain it to
him, and it was more interactive this way, so it felt like
you have kind of a second human.” (P7)

Finally, the system was perceived as curious when it behaved

proactively. The participants noticed that the curious system “showed
more initiative” (P13) and “was a lot more proactive” (P1).
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Increasing Perceived Curiousity. We asked participants how

they imagined the system could be changed to increase the per-

ception of curiosity. The responses generally related to increasing

the behaviors and properties in the previous sections. For example,

the participants suggested asking more questions (P15), interacting

with more objects (P2), exploring more of the environment (P17),

and being more proactive (P5). On a higher level, participants sug-

gested that a system would appear more curious if it learned and

improved over time, displaying a “willingness to learn combined with
success in learning something” (P3). Finally, some participants noted

that it may have been easier for the system to express curiosity in

a more complex or uncertain task.

Interaction Modality. We also asked participants to reflect on

the different interaction modalities present in the system. Most

participants noted that both verbal and non-verbal modalities were

useful for explainability and helping the user to understand the

intentions of the system:

“Verbal communication is the most important one in
this case because if it doesn’t say anything, I don’t know
what’s happening.” (P5)
“He looked at where he wanted to grasp. That was, I
think, good in terms of me knowing what he’s doing.”
(P19)

Participants also noticed that different modalities can be advan-

tageous in different contexts and tasks. Verbal interaction can be

useful to quickly learn information from users, saying “It could
just ask me if I know what is in the box, which would be also curious
behavior; it’s more efficient” (P19). Conversely, non-verbal behaviors
are appropriate when the system needs to try things out and ex-

plore to learn, noting “in the wild there are tasks where you actually
have to try out things [...] to actually interact with objects” (P11). On
the other hand, they noted that physical exploration in unknown

environments could lead to dangerous situations:

“Would you want the robot to shake the pan? Maybe
dripping hot oil or something, right?” (P13)

Long Term Use. Finally, we asked participants to think forward

and imagine benefits and concerns about curious robots in the fu-

ture, and to imagine use cases where they would want to interact

with a curious robot. The most frequently mentioned benefits re-

lated to learning. Participants noted that “the advantage of curiosity
is that over time, the robot should learn more” (P11). They noted that

this would result in more questions at the beginning but would

make it “make it efficient in the long term” (P12). Participants also

imagined that the system and the users could learn together:

“If there’s a task that I don’t know yet, and also the robot
doesn’t know [...] we both can learn something about a
task.” (P11)

Conversely, participants also expressed some concerns about a

curious system. They imagined that the system could be annoying

(P12), noting that it would be important for the system to under-

stand “when curiosity is okay and when it is not okay” (P13). Ulti-
mately, participants gave the impression that it is more important

for the system to be effective, whether it learns tasks by being “curi-
ous, or whether it’s just machine learned in advance” (P2). Although
some participants noted privacy concerns (P13), others suggested

that systems could share information to grow their intelligence

collectively:

“Share their experiences across each other, across systems
distributed around laboratories or people’s homes” (P2)

Regarding use cases, participants most frequently mentioned

that they would want a curious system for learning unfamiliar tasks

where both the system and the user are gaining knowledge:

“In a situation where it’s helping me discover, like ac-
quire knowledge. So, in an exploration setting, when we
are exploring an environment together.” (P1)

Many participants also noted that a curious system would be

useful for household tasks, as it would learn their preferences over

time. Lastly, participants frequently mentioned social tasks, such

as interacting with elderly (P16) or lonely (P17) people, where a

curious system would be beneficial.

6 Discussion

Based on the results from our user study, in which 20 participants

interacted with a curious and a non-curious autonomous system,

we discuss our findings on creating a perceivable curious robot,

how system curiosity affects user experience, and discuss using

MM-LLMs to modulate system behavior. Lastly, we provide recom-

mendations on how to design system curiosity.

6.1 Users Can Perceive the Robots’ Curiosity in

a Collaborative Task

Both through the qualitative data and questionnaire results, we

found that participants perceived the curious Character as more

curious, indicating that our manipulation was successful. First, in

direct comparison and without any priming, 90% of participants

stated when asked to compare that they found the curious system
more curious than the non-curious system. While we did not ex-

plicitly create curious behaviors for different types of curiosity, we

found that participants named aspects of the system that we can

now categorize. Furthermore, we found that participants always

perceived the curious system as significantly more socially curious,

investigative, and explorative through the three subscales of the

PSC. This is also supported by the interviews, in which the ma-

jority of participants stated that they noticed the socially curious

and explorative behavior most often. The investigativeness of the

system was also named in the interviews, as participants noticed

both task-related and task-unrelated questions as curious questions.

Thus, we could successfully create user-centric curiosity for an

MM-LLM-driven robot.

Previous works primarily created curious robot behaviors for

robot learning [13, 51], educational tasks [14, 58], or off-task be-

havior [70]. Conversely, we created an autonomous system, which

decided when and how to be curious during collaborative service

tasks. Our findings that curious behavior is observable align with

the findings from previous work [22, 70]. Importantly, we tested

this system across two different settings and did not find any dif-

ferences in perceived curiosity, showing the generalizability of our

system across tasks. We found that the two Characters interacted

with the user in a significantly different way. To summarize, we

showed that we can change the perceived curiosity in a service
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robot by giving the autonomous system a character via an LLM

system prompt.

6.2 Curious System Behavior Improves User

Experience

When designing the system prompts to modulate the robot’s char-

acter and behavior, we aimed to vary its perceived curiosity without

altering its intelligence or other capabilities. Although we observed

no significant differences in perceived intelligence between condi-

tions, this does not definitively isolate curiosity as the sole factor

influencing user perceptions. Nevertheless, our findings indicate

that introducing curiosity into the system’s behavior led to sig-

nificant positive effects for anthropomorphism and animacy. Fur-

thermore, the most stated difference between the two systems by

the participants was that the curious system was more human-

like, social, and interactive. Thus, we found that curious system

behavior also increases human-likeness and lifelikeness/animacy.

This is supported by literature giving other human-like traits to

technical systems [54]. Previous work demonstrates that systems

exhibiting human-like traits foster greater willingness to interact,

leading to enhanced human-robot interaction [3, 39, 54, 74]. Robot

curiosity has also been shown to help spark human curiosity and,

thus, increases human interest in the task [14, 58]. Thus, giving a

system curiosity as a trait that changes its behavior can make this

interaction more engaging for users.

Walker et al. [70] found that off-task curiosity might be nega-

tively perceived but also stated that this can be mitigated by letting

the robot acknowledge and explain its decision process. In our col-

laborative setting, the robot would usually explain verbally what it

planned to do, hence proactively giving an insight into its reasoning.

Many participants also stated the importance of understanding the

actions and decisions of the robot, either from the robot verbally

supporting its actions or through transparent non-verbal actions.

6.3 Using MM-LLMs to Create and Modulate

Personalities for Systems

Previously, with model- and rule-based systems, it was difficult

to rapidly create certain behaviors for robots. Model-based sys-

tems can trigger single curious behaviors driven by a reward func-

tion [70]. However, such behaviors require delicately designed re-

ward functions. Furthermore, in such systems, the model only trig-

gers the curious behavior; the dialog and interaction flow still might

be missing or rely on rule-based templates, which leads to scenario-

dependent interaction designs. Previous research proved that LLMs

can successfully generate expressions [47] and adjust their actions

according to human input [2, 78]. Other have also used LLMs to

create expressive robot actions when interacting with users [65, 72].

However, previous work still has not shown whether LLMs can be

used to regulate robot behavior according to a certain character-

level trait across different tasks. In our study, we show that we were

able to create one system prompt, which was able to drive interac-

tion across two different tasks, indicating the possibility for more

generalizability. However, currently, it is still necessary to engineer

the prompt in a way that works for all used tasks.

When setting the curious system character, we aimed for the ro-

bot to exhibit a wide range of behaviors. Every interaction with the

robot triggered some of these curious behaviors. However, which

and how often each behavior occurred depended on how the user

interacted with the system. In some interactions, the user would

already state information the robot needed, leading to the robot not

performing the expressive curious behavior we implemented for

that situation but rather relying on the verbally gathered knowl-

edge. This shows that we could use the LLM to imbue the system

with a persona instead of just providing it with a set of curious

capabilities. This is in line with Schmidt et al. [62], who outline

how LLMs can be used to create living characters from personas

that users can interact with in real time.

In our manipulation checks, we found that both systems used all

capabilities, and especially that the curious system would use the

capabilities in a way to express user-centric curiosity, showing that

we can change the system’s persona, which is in line with related

work [30]. We originally aimed to provide this persona only on a

high level and hoped that the system would, via this trait, perform

the expected behaviors correctly itself. However, currently, LLMs

still suffer from forgetfulness [16], which led us to structure the

system prompt into three sections, in which we had to fine-tune

the prompt by giving explicit instructions, similar to if-statements.

Furthermore, another improvement to the general system interac-

tion flow was using compound actions instead of atomic actions,

which led to the LLM needing to call less independent actions. Fu-

ture work should look into giving even less direct guidance via the

system prompt, which would generalize the curious persona even

more to any real-world setting.

6.4 Limitations

Participants interacted with our curious system for a single task, so

we did not investigate long-term effects. However, we believe that

long-term interaction is where curiosity might have its strongest

advantages. Yet, we found that even in this short task duration,

participants not only noticed the curiosity, but the majority even

preferred interacting with the curious system due to its higher

human likeness and interactivity. Future work should investigate

the effect of curiosity in self-learning systems on user perception.

Furthermore, many participants stated that one factor limiting

the system from appearing even more curious was the relative

simplicity of the task. As our study is a first attempt to understand

how curious systems affect user experience; we created a controlled

task with limited items. This ensured a fair level of reproducibility

across participants. In the future, more complex or uncertain tasks

may provide more opportunities for the robot to express curiosity.

Robots are currently still novel to most people, and we wanted

to study the effect of different robot characters on user perception.

As we did not want the study to be biased by the novelty effect of

people seeing a moving robot for the first time and rather focused

on the interaction with the robot, we decided to recruit the majority

of our participants with experience with robots. However, this is

still a limited sample of the general population, even when robots

become more ubiquitous, and thus, future work should look at this

further.

Lastly, we used an autonomous system with minimal limitations

for the user. Due to the nature of the open system, it could happen
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that depending on how a participant behaves, they may have a no-

ticeably different experience. In our case, this led to one participant

even perceiving the non-curious system as more curious because,

in their case, the system behaved differently than we expected.

7 Design Recommendations for Curious

Systems

From the PSC questionnaire results and interviews, we showed

that we could increase the perceived curiosity of our system. From

our system design and the interviews, we propose the following

design recommendations, which future system designers should

encompass when creating curious behavior for interactive systems.

Create socially curious behavior for higher user acceptance.
Socially curious behaviors, such as asking the user for their name or

preferences, were very noticeable and appreciated by users. While

not essential for task completion, participants perceived the system

as more friendly, human-like, and interactive because of the social

behavior, leading to a more natural interaction. Through social

curiosity, a system can learn more about the user and, thus, enhance

personalization. Furthermore, social curiosity fosters closeness in

human interaction [33] and, combined with anthropomorphism,

increases trust in systems [20, 50], which can improve human-robot

team performance [17].

Ask task-related questions to make the system appear curi-
ous. When humans do not know something, they typically ask for

help from another person who might know the answer. Oftentimes,

this can be the most efficient way to obtain the correct, contex-

tually relevant information. In robot systems, where efficiency is

an important factor, the same approach should be applied. In our

study, participants interpreted task-related questions as the sys-

tem having a desire to learn. In an open-world scenario, where

efficiency plays an even greater role, task-related questions can

serve as a practical and adaptive way for the system to gather crit-

ical information about its surroundings. Participants highlighted

that increasing the frequency and depth of such questions would

be a key improvement, as it would further enhance the system’s

perceived curiosity and engagement. This suggests that actively

involving users through inquiry not only helps the system learn

but also fosters a more interactive and dynamic user experience.

Use explorative non-verbal behavior to communicate per-
ceptual curiosity. Our system used non-verbal methods, such

as shaking (auditive), poking (haptic), and observing (visual), to

explore the environment. Participants named these gestures most

often when we asked them which system behaviors they perceived

as curious, which is in line with our findings of the curious sys-
tem being significantly more curious than the non-curious system.

Such gestures reflect perceptual curiosity, essential for reducing

uncertainty and gathering new information [67], especially in open-

world scenarios where users may not have the answers, requiring

the system to gather information independently. Participants also

reported that the combination of verbal and non-verbal communi-

cation enhanced the explainability of the system.

Employ the inherent proactivity in curious systems to con-
tribute to collaboration. Curiosity arises from detecting knowl-

edge gaps [45], prompting one to take actions to reduce uncer-

tainty. Similarly, supportive systems should proactively explore

and address information gaps to gain knowledge. Our participants

identified proactivity and autonomy as key differences between

our curious and non-curious systems and appreciated the system

investigating and proposing potential next steps for the task itself.

Integrating this proactivity may not be appropriate in every system

depending on the intended interaction flow, but ultimately it can

positively contribute to user experience by making the robot an

active partner.

Make the learning benefits of curiosity apparent in long-
term interactions. While most participants preferred interacting

with the curious system, some prioritized efficiency. Interaction

with the curious system required significantly more effort, mea-

sured through the raw NASA-TLX. Furthermore, this initial inter-

action with the curious system led to a longer task duration due

to the additional interactions. To reduce this additional effort for

long-term use, curiosity also must lead to increased knowledge,

reducing the amount of needed interactions with the user. This

should lead to more efficient interactions over time, reducing the

user’s burden. This learning effect should be apparent to the user

so that they understand the benefits associated with the additional

initial efforts.

Balance user-centric curiosity with task-efficiency. When

designing a curious system, it is necessary to balance when and

how often the system expresses curious behaviors. We expect that

robots will primarily be used as assistive systems in the future,

meaning their main job is to assist with completing tasks. While a

curious system will become more efficient over time, and curios-

ity is also needed as it is impossible to teach a system everything
in development, it is still important to balance curious behaviors

with task completion so that users are not overwhelmed, and ef-

ficiency is maintained. Moreover, users should be able to control

and balance the level and type (social, epistemic, perceptual) of cu-

riosity expressed by the robot depending on the context. Aligning

these behaviors with users’ perceptions of the robot’s capabilities

is critical, as a mismatch—whether through under-perception or

over-perception of the system’s actual abilities—can significantly

impact user acceptance and trust in the system [15].

8 Conclusion

In this work, we successfully created measurable curious behavior

for a robot in a collaborative task. We developed and used an open

loop MM-LLM system, with which we could tune the robot’s char-

acter to be either curious or non-curious. In a user study (𝑁 = 20),

we found that users found the curious character significantly more

curious, anthropomorphic, animate, autonomous, and interactive.

Based on our findings, we propose design recommendations on

how future work can design curious behavior. We also show that

not only the user perception was affected, but we could objectively

change the behavior of the system. We propose that with this sys-

tem, future work can use expert knowledge of other domains and

build different modulations of this personality trait for a robot.
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