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Abstract

Perceptual similarity assessment plays an important role in pro-
cessing visual information, which is often employed in Human-AI
interaction tasks such as object recognition or content generation.
It is important to understand how humans perceive and evaluate
visual similarity to iteratively generate outputs that meet the users’
expectations better and better. By leveraging physiological signals,
systems can rely on users’ EEG responses to support the similarity
assessment process. We conducted a study (N=20), presenting di-
verse AI-generated images as stimuli and evaluating their semantic
similarity to a target image while recording event-related poten-
tials (ERPs). Our results show that the P2 and N400 component
distinguishes medium, and high similarity of images, while the low
similarity of images did not show a significant impact. Thus, we
demonstrate that ERPs allow us to assess the users’ perceived visual
similarity to support rapid interactions with human-AI systems.
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1 Introduction

In generative AI systems, there is an increasing need to understand
user intent and preferences to create personalized and relevant
content [42]. This need is especially important in generative ap-
plications with complex stimuli, such as image generation [49] or
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visual recognition [17], where the AI must match outputs with
user semantic expectations [51]. While today’s models are profi-
cient in generating photorealistic imagery, it remains a challenge
to manipulate and embed semantic features of interest to the user.

Here, traditional feedback mechanisms in AI systems primarily
rely on explicit user input, such as clicks, textual input, or even using
other example images [19]. Although advanced, these methods still
prove to be uncertain [24], inaccurate, and time-consuming [38, 51].
This issue is particularly challenging in tasks of categorization or
evaluation, when users are asked to determine the relevance or sim-
ilarity of complex visual content [25, 26]. Such explicit, subjective
feedback can introduce biases and may not accurately represent
the expected and implicit user perception. Thus, AI systems may
struggle to accurately interpret and respond to user intent [2], lim-
iting their support and productivity for generative applications
based on users’ feedback. Previous work explored multimodal in-
put to inform AI outputs, particularly in systems requiring human
interaction for decision-making or information retrieval [2]. Gwiz-
dka et al. [21]) investigated the temporal dynamics of eye-tracking
and EEG during reading and relevance decisions, highlighting that
combining these inputs can effectively capture user attention and
decision-making processes. In another study, Huang et al. [23] ex-
plored EEG correlates of visual perception using rapid serial visual
presentation paradigms, showing that EEG signals can track rel-
evance and attention across quickly changing visual stimuli. In
our work, we explored new methods of capturing and utilizing
implicit user feedback to enhance the adaptability of AI systems by
employing ERPs to assess the perceived similarity of AI-generated
images.

We conducted an experiment with 20 participants, where each
participant was presented with a series of AI-generated images,
including target images and deviants. The participants evaluated
the similarity of these images to a predefined target image. During
this process, we recorded the participants’ Event-Related Potential
(ERP) responses, focusing on the P2 and N400 components. The P2
was analyzed to examine early attentional and perceptual processes
involved in comparing visual features of the images, while the
N400 was investigated to explore potential semantic or conceptual
processes underlying the evaluation of similarity. Our goal was to
understand how these electrophysiological responses relate to im-
age perception and to assess the feasibility of predicting perceived
similarity based on these ERP components.

We demonstrate that the P2 and N400 component discriminates
between medium and high levels of perceived semantic similarity.
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This work set a foundation for employing ERP components as a met-
ric for the assessment of semantic similarity between thematically
diverse photorealistic images. Additionally, we give implications
for future work in employing ERP components as a form of implicit
feedback in classification tasks for AI systems.

2 Related Work

This section explores implicit interactions with generative AI. Fur-
ther on, it examines electrophysiological correlates of semantic
similarity as a reliable signal for implicit feedback in interactions
with such systems.

2.1 Extended Interactions Beyond Textual Input

Results achieved from a collaboration with generative AI can be
impressive. From different artistic styles to photorealistic images,
text-to-image generation can be an extremely powerful co-creator
for humans. However, in terms of communication, this is a process
limited to typing on a keyboard [6, 8]. By taking part in it, the
human is limited by the proficiency of their motor skills, their
level of literacy, input control, and expressivity [14, 33, 37, 38]. A
promising approach involves using EEG to capture neural responses
to visual stimuli. This method integrates humans into the loop by
translating natural brain activity into implicit feedback. Here, AI
systems can rely on physiological correlates of users’ states and
adapt without explicit user input. This allows AI systems to adjust
their outputs in real time, aligning with users’ underlying cognitive
and perceptual responses. Torre-Ortiz et al. [46] demonstrate that
brain relevance feedback can effectively control a generative model,
showing that implicit signals can guide the creation process. A
further study by Torre-Ortiz et al. [47] reveals that images generated
from brain feedback closely match the goals of study subjects and
are comparable to those produced with manual feedback.

We investigate ERP components that reflect early perceptual
processing and semantic similarity, proposing them as a method
to evaluate the divergence between users’ semantic expectations
and the content of images. This approach could serve as implicit
feedback for generative models, enabling these systems to align
their outputs with user expectations better. Future applications
may include real-time evaluation and input for generative tasks,
supporting personalized content creation and recommendations.

2.2 Electrophysiological Correlates of Semantic

Similarity

ERPs have been extensively utilized in human-computer interac-
tion (HCI) research to examine how the brain processes visual
stimuli [50]. These time-locked brain responses provide insights
into how users perceive [12] and process visual stimuli [10], as well
as how they identify similarity [22]. When comparing semantic
similarity between images, the P2 and N400 components are ex-
pected to be elicited within paradigms involving visual stimulus
processing.

The P2 component is typically observed around 200ms after stim-
ulus onset, is associated with early attentional processes and the
detection of visual features. It reflects the initial selection and cate-
gorization of visual stimuli, indicating how quickly and efficiently
the brain can identify relevant features in the visual field [13, 41]. P2

is linked to visual differences like color and spatial arrangements [7],
detecting visual features rather than semantic [15], and not to vary
with semantic content [40], reinforcing that P2 is focused on basic
visual attributes.

The N400 component, typically occurring between 300-500 ms
after stimulus onset, is a well-established marker of semantic pro-
cessing and integration of meaning [9, 43]. In linguistic contexts, the
N400 is elicited when a word is semantically incongruent with the
preceding context, indicating a processing challenge or expectation
violation [29]. This ERP component’s relevance extends beyond
verbal stimuli to non-verbal contexts, demonstrating sensitivity to
semantic incongruities found in linguistic and visual stimuli [27].
The transition from linguistic to visual stimuli highlights the N400’s
general role in semantic processing. Nigam et al. [36] showed that
N400 is consistently elicited by semantic anomalies, regardless of
whether the stimuli are words or pictures, emphasizing its broad
applicability in detecting semantic incongruence.

This suggests that the evaluation of AI-generated images might
show similar ERP patterns, with greater similarity to the target
image producing distinct ERP responses, particularly in the N400
component. While the N400 is attuned to the semantic content and
relevance of stimuli, the P2 component, which is mainly involved
in early visual processing, may not be influenced by how similar or
different AI-generated images are from a target picture.

3 User Study

Prior research highlights the importance of incorporating user in-
put into AI systems to improve outcomes, especially in co-creation
tasks where human preferences shape the creative process [34, 35].
In this study, we focused on using electrophysiological signals
as a means to evaluate users’ visual and semantic processing of
AI-generated images. We conducted an experiment with 20 par-
ticipants, presenting them with AI-generated images comprising
a target image alongside deviant and similar stimuli. Participants
evaluated the similarity of each stimulus to the target image us-
ing a slider scale. Drawing from previous work, we formulate the
following research question:

RQ: Can ERP responses reliably reflect the perceived semantic
of AI-generated images to a target one?

3.1 Stimuli Generation

The stimulus sets were generated using Midjourney (Version 6.1).
The generated stimuli consist of everyday scenes, incorporating dif-
ferent objects, food, animals, etc. In total, we generated 220 images,
which allowed us to create 20 sets. Every set consists of one target
image and 10 stimuli images, including instances with different sim-
ilarity levels to the target image, one instance of the target image
itself, and two unrelated instances. Each set of images followed a
different theme, such as a tennis court, garden, and living room. We
used multiple semantic topics to enhance the richness and diversity
of the image stimuli, allowing for more robust ERP responses [32].
Lu et al. [32] suggests that diverse semantic information allows
for stable ERP amplitudes and accurately reflects real-world sce-
narios where multiple, often complex, factors influence attention
allocation and decision-making. Similarly, Ullsperger and Grune

https://www.midjourney.com/
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Figure 1: Generation of stimuli. A showcase of the stimuli

generation process, depicting the prompt (right) used to gen-

erate an image (left). Left: the first image represents a target

image, whereas the second one is a stimuli image. Middle:

non-target image but semantically related to the target im-

age. To ensure similarity, we used a prompt to create a strong

variation of the target image. Right: a non-target related im-

age, semantically unrelated to the target image.

[48] demonstrated that the use of multi-dimensional stimuli in-
creases ERP amplitude, highlighting the role of complex semantic
content in engaging relevance processing. We illustrated the stimuli
generation in Figure 1.

3.2 Apparatus

We built the study application using PsychoPy v2024.2.1. We used a
VIEWPixx Liquid Crystal Display (LCD) with a refresh rate of 120
Hz and a 1920 × 1080 pixels resolution of 23.6 inches. We used an
EyeLink 1000 Plus to track the user’s gaze behavior, measuring 60cm
of the eye-to-screen distance. The images were displayed centrally
on the screen, at 2.69° by 2.65° area of visual angle. EEG data were
collected using 64 Ag-AgCl pin-type passive electrodes embedded
in a water-based EEG cap (R-Net, BrainProducts GmbH, Germany).
Electrodes were positioned according to the 10–20 system at the
following locations: Fp1, Fz, F3, F7, F9, FC5, FC1, C3, T7, CP5, CP1,
Pz, P3, P7, P9, O1, Oz, O2, P10, P8, P4, CP2, CP6, T8, C4, Cz, FC2,
FC6, F10, F8, F4, Fp2, AF7, AF3, AFz, F1, F5, FT7, FC3, C1, C5, TP7,
CP3, P1, P5, PO7, PO3, Iz, POz, PO4, PO8, P6, P2, CPz, CP4, TP8, C6,
C2, FC4, FT8, F6, F2, AF4, and AF8. EEG signals were acquired using
two LiveAmp amplifiers at a sampling rate of 500 Hz. Electrode
impedances were maintained at or below 20 kΩ. FCz was used
as the online reference, while AFz was the ground electrode. We
employed the Lab Streaming Layer (LSL) framework to synchronize
and record physiological data and experiment events.

3.3 Procedure

Upon arrival, we briefed the participants about the study and asked
them to provide informed written consent. We asked them to fill
out a questionnaire consisting of demographic information and
AI literacy questionnaire [5]. In the demographics, we noted the
participants’ gender, age, level of education and employment status.
We explained the protocol in detail and presented participants with
a paper-based example of the task they would do later. We asked
the participants to wear the EEG headset and sit on a chair in a
comfortable position in front of a monitor, providing them with

a mouse and keyboard as a feedback input method. We ensured
the ergonomic comfort of the participants by adjusting the table,
chair, or headrest height to accommodate each individual. Each
participant placed their head on a head and chin rest and sat 60
cm from the screen. As next, we calibrated the eye tracker and
began the experiment. In total, participants rated the similarity of
200 image pairs in succession. This was a recurring process, where
after one iteration (1 target image, ten image stimuli), a new target
image was introduced, followed by a new set of 10 image stimuli,
and we randomized the order of the target images. The participants
were shown a target image, followed by a test image stimuli. For
each image stimulus, we asked participants to assess the similarity
to the target image via the following statement: “This image has
a very high similarity to the target image.” As an input method,
we provided a 101-point slider, ranging end values from strongly
disagree(lowest similarity) to strongly agree(highest similarity).
Participants could take a break after each similarity rating and
continue when ready.

3.3.1 Trial Structure. At the beginning of the task, we present a
target image to the participants. The duration of the presentation
was relative, as the participants could proceed to the next step when
they were feeling ready by pressing "space." In the next step, the
participants are presented with a black fixation cross (+) with a
given duration of 1000ms, positioned centrally on the screen. The
next step presented an inter-stimulus interval (ISI) of 1000ms with
an additional random offset of 250ms, 500ms, or 750ms to reset the
neural and attentional reserve and avoid fatigue effects [52]. For
3000ms, an image stimulus is presented to the participants. Finally,
we presented them with a slider to rate the similarity; once a value
was chosen, they moved to the potential break. An optional break
was offered to the participants, which they can take or continuewith
the task with a button press [1]. After each break, we re-calibrated
the eye tracker to ensure high-quality data.

3.4 Participants

We recruited 27 volunteers through the institutional email list and
convenience sampling methods. We excluded eleven participants
from the analysis due to unsatisfactory EEG data quality, as iden-
tified by RANSAC, which revealed that the electrodes of interest
compromised the data reliability for those participants. This totaled
16 participants (9 females, 7 males, none diverse). 12 participants
were aged 18-24, and 4 of them were aged 25-34, and one in the
age range 45-54. Additionally, we surveyed the participants using
the Meta AI Literacy Questionnaire [5]. The participants reported
an overall score (𝑀 = 5.6, 𝑆𝐷 = 1.5), encompassing the conditions
AI literacy (𝑀 = 6.3, 𝑆𝐷 = 1.4), Create AI (𝑀 = 2.6, 𝑆𝐷 = 3.0), AI
Self Efficacy (𝑀 = 4.8, 𝑆𝐷 = 2.1), AI Self Competency (𝑀 = 6.4,
𝑆𝐷 = 1.7).

Exclusion criteria for the recruitment included a medical history
of psychological or neurological disorders, color blindness, and
visual impairments. The local ethics committee approved the study,
qualifying as fast-track approval since the participants were not
subjected to any risk (e.g., deception, stress beyond normal levels,
recording of sensitive information). The study averaged 1.5 hours,
which we compensated with 12 EUR per hour.

https://www.psychopy.org/
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3.5 EEG Preprocessing & ERP Analysis

We first automatically detected bad or outlier channels via the
random sample consensus (RANSAC) method [3] using spheri-
cal splines for estimating scalp potential based on algorithms pro-
posed by Perrin [39]. We then applied a notch filter at 50 Hz and
band-passed the signal between 1–15 Hz to remove high and low-
frequency noise. The signal was re-referenced to the common aver-
age reference (CAR). Independent Component Analysis (ICA) for
artifact detection and correction was performed using the extended
Infomax algorithm [30]. ICA components’ labeling and rejection
process was automated using the MNE plugin “ICLabel” [31]. We
segmented continuous signals from 200 ms before to 1000 ms after
image display onset, using a 200 ms pre-stimulus baseline for cor-
rection. The P2 component was quantified as the average positive
peak amplitude in the 150–275 ms window. This analysis focused
on electrodes Fp1, Fp2, F7, and F8, which are known to be sensitive
to early perceptual processing in the frontal regions, as supported
by previous research [41]. The N400 component was measured as
the average negative peak amplitude in the 350–550 ms window,
centered around the typical N400 peak latency observed in the
grand average waveforms. For the N400 analysis, electrodes Fz, Cz,
C3, C4, F3, and F4 were used [20, 43].

4 Results

In the following, we present the results of our evaluation. We em-
ployed a Linear Mixed Model (LMM) to investigate P2 and N400
peak amplitude differences.

4.1 P2 Amplitude

We fitted a linear mixed to predict the P2 amplitude based on Seman-
tic Similarity. The total explanatory power of themodel was substan-
tial, with a conditional 𝑅2 of .48, indicating that the model explained
48% of the variance in peak amplitude. The variance explained by
the fixed effects alone was moderate, with a marginal 𝑅2 of .10. The
intercept, corresponding to the High condition, was statistically
significant at 4.18 (95% CI [2.17, 6.18], 𝑡 (43) = 4.21, 𝑝 < .001). The
effect of the Medium condition was statistically significant and pos-
itive, with 𝛽 = 2.23, 95% CI [.08, 4.39], 𝑡 (43) = 2.09, 𝑝 = .042. The
standardized effect size was 𝛽std = .55, 95% CI [.02, 1.07], indicating
a moderate positive impact on amplitude. The effect of the Low con-
dition was statistically non-significant and negative, with 𝛽 = −.81,
95% CI [−2.97, 1.34], 𝑡 (43) = −.76, 𝑝 = .450. The standardized effect
size was 𝛽std = −.20, 95% CI [−.72, .33], suggesting a small and
non-significant impact on amplitude.

4.2 N400 Amplitude

The total explanatory power of the model was substantial, with a
conditional 𝑅2 of .42, indicating that the model explained 42% of
the variance in peak amplitude. The variance explained by the fixed
effects alone was moderate, with a marginal 𝑅2 of .09. The intercept,
corresponding to the High Similarity condition, was statistically
significant at −3.09 (95% CI [−3.80,−2.37], 𝑡 (43) = −8.71, 𝑝 < .001).
The effect of the Medium Similarity condition was statistically
significant and negative, with 𝛽 = −1.06, 95% CI [−1.87,−.26],
𝑡 (43) = −2.67, 𝑝 = .011. The standardized effect size was 𝛽std =

−.73, 95%CI [−1.28,−.18], indicating amoderate-to-strong negative
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Figure 2: Grand Average event-locked to image display onset.

Data reflect the results obtained from frontocentral ROI for

each Image Similarity condition. (a) The P2 component (150-

275 ms) shows a statistically significant differences between

Medium and High. (b) the N400 component (350-550 ms)

exhibits significant modulation, with greater positivity for

high similarity conditions in AI-generated images.

impact on Amplitude. The effect of the Low Similarity condition
was statistically non-significant and negative, with 𝛽 = −.42, 95%
CI [−1.23, .38], 𝑡 (43) = −1.06, 𝑝 = .295. The standardized effect
size was 𝛽std = −.29, 95% CI [−.84, .26], suggesting a small and
non-significant impact on amplitude.

5 Discussion

We explored how the human brain processes AI-generated images
at different levels of semantic similarity, providing the groundwork
for the development of implicit human-AI interaction systems. ERP
responses reveal distinct neural mechanisms that underlie both per-
ceptual and semantic processing of artificial visual content. These
findings significantly impact user experience with generative AI
systems and developing more effective implicit feedback mecha-
nisms.
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Figure 3: (a) P2 Peak Amplitude and (b) N400 Peak Ampli-

tude. For both, we found significant differences between the

Medium similarity images and the High similarity images.

5.1 P2 and N400 Components Reveal Distinct

Processing Stages in AI-Generated Image

Perception

The increasing use of AI-generated imagery requires a better un-
derstanding of how humans process these artificial outputs. We
examined whether ERPs, particularly the P2 and N400 components,
could serve as implicit markers of semantic similarity perception in
AI-generated images. The results confirmed a dissociation between
early perceptual processing (P2) and later semantic integration
(N400).

Regarding the P2, which underlies early visual attention and
feature detection, revealed an interesting pattern across semantic
similarity conditions. We found no differences between high and
low similarity, but we found an increased positivtiy for medisum
similarity images. This stability across high and low conditions
confirms that early perceptual processing operates independently
of semantic meaning, with the brain similarly processing visually
dissimilar content at this early stage (150-250ms post-stimulus). The
increase for the Mediun similarity conditition suggests these am-
biguous images may recruit additional attentional resources during
early processing, possibly reflecting the brain’s attempt to resolve
perceptual uncertainty when confronted with partially matching
features. This U-shaped response pattern aligns with predictive
coding theories, where completely novel stimuli are quickly catego-
rized as "different," without requiring additional processing. Overall,
the relative stability of P2 amplitudes across conditions supports
previous research demonstrating that P2 primarily responds to
physical features rather than semantic relationships [7, 15, 40, 41].

This finding aligns with predictive coding theories, which pro-
pose that the brain continuously generates and updates predictions
about incoming stimuli. When a stimulus closely matches an ex-
pected category (high similarity) or is clearly incongruent (low
similarity), prediction error is minimized, requiring less processing
effort. However, medium-similarity images create greater uncer-
tainty, leading to increased prediction error and, consequently, a

stronger N400 response as the brain engages in additional process-
ing to resolve the ambiguity. This is consistent with research show-
ing that ambiguous or partially matching stimuli require greater
cognitive effort for semantic integration, as the brain must reconcile
competing interpretations before reaching a stable representation
[18, 28, 45].

5.2 ERP as Future Implicit Feedback

Mechanisms for Generative AI Systems

The integration of ERPs into generative AI systems opens possi-
bilities towards implicit and diverse feedback. Previous work that
explored the use of ERPs as a form of implicit feedback Studies
done on a certain type of stimuli report

The P2 and N400 components provide insights into perceptual
and semantic processing, capturing the user’s immediate reaction
based on which they form their opinion [47]. These findings pose
them as promising real-time indicators of user engagement or com-
prehension when interacting with AI-generated outputs [16, 46, 47].
The increased N400 response can be employed to detect semantic
incongruities in AI outputs, while altered P2 amplitudes could re-
flect perceptual mismatches. This dissociation allows us to track
at which stage potential issues with AI-generated content arise -
whether at basic visual perception or deeper semantic understand-
ing. Further on, these findings suggest that our brain processes AI
images similarly to natural images, with distinct stages for visual
features and meaning. This validates that humans can meaning-
fully engage with AI-generated content while giving a method to
measure on how they process such content.

5.3 Limitations & Future Work

While our study provides first insights into utilizing ERPs as an
implicit technique for assessing semantic similarity in AI-generated
images, we address several limitations that should be addressed in
future work. Firstly, our analysis was conducted entirely offline,
meaning we only processed the data after all trials had been col-
lected. This limits the applicability of our findings to real-time
systems, which needs to be explored. Our work provides a step-
ping stone for future research that extends to the development of
systems that leverage machine learning models that could leverage
neurophysiological data to detect semantic similarity or dissimilar-
ity between images in real time. The trial-based setup of this study
also fails to fully capture a natural interaction between humans and,
for e.g., an AI-driven image generator. For instance, an AI system
that is fully capable of implicitly interpreting perceptual visual sim-
ilarity could create a path for studying iterative interactions that
involve real-time feedback. Future work should explore how such
interactions influence ERP responses and how neural data could
guide AI systems to adapt or generate semantically meaningful
content in real time [4, 11, 44].

Second, although we conducted an experiment where diverse
visual stimuli were presented, we did not include images with faces.
Faces are strongly associated with the N170 ERP component, which
reflects early face-sensitive perceptual processes; however, we did
not inspect them in this study. The lack of facial stimuli limits the
generalization of our findings for scenarios that are relevant to the
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assessment of visuals that include faces. Future studies should in-
clude face stimuli to explore how facial features might interact with
semantic similarity processing, as this could reveal different neural
activity. Additionally, incorporating a comparison with non-AI-
generated stimuli could have resulted in differences in perception
or confirmed the reliability of our results. Last but not least, in-
corporating eye-tracking data into the experimental design could
provide insights on how visual attention contributes to semantic
similarity assessments. Eye-tracking could help identify specific vi-
sual features (e.g., regions of interest) that create differences in ERP
responses, such as the N400. By combining eye-tracking with EEG,
future research could achieve a more detailed understanding of the
interaction between visual attention and semantic processing.

6 Conclusion

Our findings demonstrate that ERPs can serve as reliable markers
of how humans process and evaluate AI-generated images, with
P2 and N400 components reflecting distinct aspects of visual and
semantic processing. P2 and N400 responses indicate perceptual
processing acrossMedium andHigh similarity, providing a potential
implicit feedback mechanism for AI systems. This work establishes
a foundation for integrating electrophysiological measures into
human-AI interaction, offering a path toward more intuitive and
user-aligned content generation.

7 Open Science

We encourage readers to reproduce and expand upon our findings.
To facilitate this, our experimental setup, datasets, and analysis
scripts are openly accessible on the Open Science Framework at
the following link: https://osf.io/b89f6/.
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