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Figure 1: Example of spatial referencing in in-car navigation: user asks “What’s the name of the lake in the middle of my
screen”. System replies by grounding to the display screenshot. Categories of taxonomy (POI information, Points of Interest,

Absolute, Interface) can be mapped to the user utterance.

Abstract

In human-human conversations, a shared visual layer allows con-
versation partners to refer to visual elements through spatial refer-
ences - such as “on the left” or “the blue pen next to you”. Current
voice user interfaces, however, lack the context needed to interpret
such references, limiting their naturalness. This capability is par-
ticularly valuable for in-car interactions, where combining voice
and graphical interfaces offers opportunities for more fluent and
effective interaction while driving. In this work, we integrate a mul-
timodal large language model for an in-car infotainment system to
enable the interpretation of spatial references. Through a user study
(N=21), we collect and analyze user utterances to investigate within
the context of automotive navigation tasks. As a result, we created
a taxonomy that categorizes diverse strategies participants used
to reference on-screen elements. Our findings contribute a frame-
work for understanding spatial referencing behavior in vehicles
and inform the design of future multimodal in-car systems.
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1 Introduction

In-vehicle interaction often involves multiple interfaces simultane-
ously, such as the built-in infotainment system, the steering wheel,
and haptic buttons [27]. The primary interaction modality for in-
fotainment functions is usually a graphical user interface (GUI).
For example, navigation systems provide drivers with a visual rep-
resentation of routes and points of interests (POIs) inside maps
and navigation applications. While GUIs are a core part of automo-
tive interfaces, voice user interfaces (VUIs) offer advantages with
a hands-free nature and lower visual distraction [23, 26]. Recent
advances, particularly the integration of large language models
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(LLMs) in VUIs, present an opportunity to make conversations
more natural and human-like [20]. One decisive aspect in human-
human conversation is our ability to reference spatially in a shared
visual layer. For example, when we are standing next to each other,
we use verbal spatial referencing to speak freely about the location
of objects relative to us, like what is to our “left” or “right” Other
examples could be using shape descriptions like “heart-shaped” or
colors like “green”” Spatial referencing, applied to the GUI inside the
vehicle, allows the driver to reference visual elements on the GUI
using natural language, such as “pick the route that is highlighted in
blue” or “take the marker on the bottom right” Although the LLM’s
capacity to process natural language appears to make this form of
communication feasible in the vehicle [29], little is known about
how and why users would use spatial referencing and what kind
of technical solutions are necessary. Further research is needed to
understand user interaction patterns before identifying solutions
that can best support a seamless user experience.

In recent research, the modality of including images as contex-
tual input in LLMs was introduced and explored as multimodal
large language models (MLLMs) [12, 34, 38]. This modality has
been used in visual question answering (VQA) of users asking gen-
eral questions about pictures [1, 11]. Possible questions are mostly
generalized, like “What’s the name of the building?” or “Which dog
breed is this?”, focusing on the big picture of the image. Despite
these advancements, visual MLLMs still encounter difficulties gen-
erating correct outputs with a tendency to produce erroneous or
hallucinated responses [10, 18]. Tackling these challenges, research
investigating spatial referencing is largely resolved around the im-
provement of spatial reasoning, which describes the ability of a
system to link spatial expressions (e.g., “in front of”, “to the left of”,
“above”) to concrete visual elements. In comparative evaluations, hu-
mans achieve accuracies above 95%, while state-of-the-art MLLMs
only reach around 70% accuracy on benchmarked spatial reasoning
tasks [19]. Spatial referencing has also been investigated in human-
robot interaction. Li et al. [17]’s findings highlight how ambiguity
can reduce clarity and accuracy of natural language. Instructions
that were perspective-independent (e.g., “the yellow block in the
middle”) were much easier to follow than those relying on unspec-
ified viewpoints (e.g., “the block to my left”), which often led to
misinterpretations. Within the domain of GUI understanding, Ferre-
tUI [39], for instance, provides an MLLM enhanced with the ability
to ground and reason about on-screen elements. By dividing GUIs
into sub-images for separate encoding and fine-tuning the model on
a curated dataset of questions about the GUL Further advances in
grounding frameworks and improving MLLM performances have
led to state-of-the-art systems for GUI understanding [2, 9, 37, 39].
While these methods advance GUI understanding, they are domain-
specific and remain limited to web, desktop, or mobile settings.
VUISs rely on speech, which also introduces unique challenges for
spatial referencing, since users must describe GUI elements verbally.
In automotive contexts, visual content is dominated by navigation
systems with maps and route information, which provide a particu-
larly rich source of graphical context. However, empirical research
appears to be lacking on how users interact with such systems in
real time and investigates how drivers would spatially reference in
in-car GUIs. To address this gap, we implement a prototype in-car
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VUI that integrates MLLMs with image inputs to enable spatial ref-
erencing within the navigation context. We conducted a user study
to collect and analyze how drivers spatially reference in-car GUIs
during navigation tasks. Our contributions are: (1) the design and
implementation of a spatial-referencing-enabled in-car VUI, and (2)
empirical insights into the challenges and opportunities of spatial
referencing in automotive contexts, derived from a controlled user
study conducted in a stationary vehicle.

Using the results of the study, we used thematic analysis to create
a taxonomy that represents how users use spatial referencing to
speak about displayed content on the screen in the navigation con-
text. We further analyzed the frequency and sequence of different
reference types. The implementation of spatial referencing presents
a step forward in creating a hands-free and intuitive VUI and GUI
experience inside the vehicle. At the same time, the taxonomy will
provide an understanding of user behavior that will help with the
continuous design and implementation of human-like VUIs.

2 Related Work

“There are classes of things that are done better with
speech and natural language than with direct manip-
ulation...And when speech and language interfaces
become more conversational, they will take their place
along with direct manipulation in the interface” [7]

Already in the 1990s, Don et al. [7] envisioned speech as a natural
complement to GUIs, suggesting that conversational VUIs would
one day blend seamlessly with direct manipulation. One aspect of a
blend of VUI and GUI is the ability to reference what you see in the
real world, thus enabling spatial referencing. We first describe prior
research on spatial references in conversational speech interaction
and their role in in-car systems. We then dive into the topic of how
such spatial references could be enabled and what has been done
in that domain.

2.1 Interactions through combining VUI and
GUI and the Automotive Context

With the launch of commercial VUIs, speech interaction has gained
popularity. Since then, speech interactions have become more well-
known, and an increasing number of assistants are being released by
tech giants, trying to improve the experience and find use cases for
speech assistants. However, a study by Mahmood et al. [20] revealed
that the most common uses of VUIs still include system-based
commands like asking for the weather (70% of the participants) and
setting reminders, timers, and alarms (65% of the participants). Thus
showing that system-based commands like “What’s the weather?”,
“Set timer to 10 minutes.” and “Set a reminder for 2 PM.” are still
most known to users. This raises the question, even if technology
is moving forward, when will speech interaction take the shift to
a more human-like conversation? When referring to VUI design
guidelines, a meta-analysis, Murad et al. [22], found that one of
the guidelines was to design conversational interaction that maps
to real-world conversational norms and dialogue patterns. VUI
interactions should align with the user’s mental model, and part of
this could also be applied to the information from a shared visual
layer. Research combining speech with gaze cues demonstrates the
benefits of multimodality for spatial referencing. When participants
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could see their partner’s gaze position in addition to hearing speech,
they completed tasks more efficiently and with greater precision
[24]. This suggests that speech alone may be insufficient in contexts
requiring spatial grounding, such as in-vehicle interaction, where
shared visual references could reduce ambiguity. When it comes
to in-vehicle visualization, more and more car functions are being
displayed in the digital realm. Automotive is experiencing a shift
from traditional physical buttons to GUIs in car interiors. Switching
buttons, knobs, and switches with interactive displays [5, 21, 27]. In
the specific use case of navigation, the GUI comes in as a great way
to present the map and information about routes, PO and occurring
route incidents. A focus in the automotive context is the navigation
use case, with the challenges of the most visually and graphically
displayed information. The role of a VUI is hands-free use and
requires the least eye glances, but at the same time, it requires a
cognitive load to process the information [26]. Most of the time,
the information is not even presented in any visual way. If the GUI
visually presents the information, it requires drivers’ attention and
the most eye glances. Integrating speech and visual references could
reduce these trade-offs, creating more natural, efficient in-vehicle
interactions. Spatial terms in speech can serve as a bridge between
what users see and what they say, enabling conversations about
shared visual content. However, spatial references are inherently
ambiguous, as they can be interpreted egocentrically (relative to the
speaker) or allocentrically (relative to the conversational partner’s
perspective) [17]. Understanding these nuances is key to effective
multimodal system design.

2.2 Spatial Reasoning for Multimodal Large
Language Models

The technical evolution from LLMs to MLLMs marks a significant
step forward in the work and research of LLMs. MLLMs are mod-
els that include reasoning not only on text but also on audio and
images. In work focusing on GUI interpretation, FerretUI used an
MLLM to enhance the understanding of mobile screens. FerretUI
specifically addresses the challenges of processing mobile screens,
where elements like icons and text are often small and detailed.
Improvements in visual detail were handled by dividing the GUI
into sub-images for separate encoding [39]. Training the model
on a curated dataset of elementary and advanced questions about
the GUI further enhances its ability to perform advanced tasks like
"Where can I find the app store?". This approach surpassed GPT-4V
on all the elementary UI tasks.

However, integrating the vision modality also comes with lim-
itations. It has been demonstrated that MLLMs tend to provide
responses that are inconsistent with real-world knowledge or user
inputs, which are known as hallucinations [10]. Hallucinations with
vision-based MLLMs are described as image content answering that
is inconsistent with the image content itself. MLLMs have been
known to suffer from this phenomenon.

Recent work also implies that MLLMs do not generate output
heavily based on visual information when textual context is pro-
vided. When given both visual and text data, MLLMs tend to rely
more on the text. When given mismatched visual and correct text
data, the performance is not necessarily hindered, implying even
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more that MLLMs are not heavily reliant on visual context, es-
pecially when textual clues are provided. Not only that, but the
absence of visual input even leads to a better accuracy across all
questions, showing that visual inputs might even hinder the accu-
racy [32, 41]. This contrasts with human capabilities, where visual
cues might aid in understanding.

Spatial reasoning is an especially difficult area. Studies show
that MLLMs struggle with basic relations such as “left of” or “right
of;” rarely exceeding 60% accuracy even with extensive training
data [3, 13, 19]. In a study by Liu et al. [19], most visual-based
MLLMs struggled to exceed 60% accuracy even with more training
examples. Training objectives partly explain this gap: contrastive
models perform somewhat better than generative ones, but both
remain weak at handling spatial terms [13]. A further obstacle lies
in pre-training data. Even if this is the case, prepositions are rarely
needed to make the model perform well on the contrastive training
objective [13, 40]. It is also noted that pre-training models use large
datasets like LAION, which was also used to train OpenCLIP [28].
In LAION, prepositions like “under” or “left of” only occur 0.2% of
the time [13]. When prepositions are used, they can be ambiguous
due to the viewer’s perspective or vary in interpretation of the same
preposition [3, 13]. “In front of” could mean close to the viewer
of the image or ahead of the elements that are portrayed in the
image. For example, it might be shown two images or two pieces
of text and asked to determine which is most relevant to the task.
These models also rely on the large batch size to differentiate similar
examples, but not from prepositions. For example, distinguishing
“Golden retriever” from other dog breeds. Some prepositions are
much more common than others. For example, “dog under the ta-
ble” vs. “dog on the table” These limitations matter directly for
multimodal VUI GUI systems in cars, where spatial referencing is
essential for grounding speech in shared visual context. Stappen
et al. [29] proposed one of the first applications of MLLMs in vehi-
cles, focusing on diagnosing technical issues by combining verbal
prompts with visual inspection. Such multimodal approaches could
yield faster and more personalized solutions, but only if spatial
reasoning capabilities are strengthened.

3 Research Questions

We investigate how to enable spatial referencing for LLM-based
VUIs in the car and investigate user behavior with such interaction
through the following research questions:

Research Question 1. While prior work has demonstrated multi-
modal LLM capabilities, such as VQA, research has largely focused
on general scene understanding (e.g., “Which dog breed is this?”,
“What do I see in the picture?”) rather than the interpretation of spa-
tial references [1, 11]. Existing research emphasizes the limitations
of spatial reasoning, yet there is limited understanding of how such
models can be adapted to handle spatial references in task-specific
contexts [10, 18]. Therefore, we pose our first research question:
RQ1: How can LLM-based VUIs be designed to understand
user utterances containing spatial references?

Research Question 2. Prior research in the automotive domain
has not yet fully explored spatial referencing for automotive GUIs.
Navigation applications, for example, are highly visual, provide
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interactive maps, and are spatially structured. Enabling this novel
type of interaction raises questions about how users will interact
with the system, which strategies will be impaired to express spatial
references, and in which situations they will be motivated to do
so. Speech enables another complex challenge that provides a fast
and dynamic interaction modality [22, 26]. Understanding user
behavior will help address the challenges in enabling this type
of interaction in LLM-based VUIs. Accordingly, we address the
following second research question: RQ2: How do users structure
and utter spatial references during interactions with a VUI
in in-vehicle navigation tasks?

4 Enabling Spatial Referencing for a Voice User
Interface in the Car

To address RQ1, we implemented a prototype system that allows
an LLM-based VUI to process spatial references in the context of
an automotive infotainment system, specifically the navigation
application, as shown in Figure 2. Our approach combines the
multimodality of LLMs, which refers to their ability to process
and integrate different data modalities, such as text, images, and
structured data, with LLM function calling. In this case, screenshots
from the central display in the vehicle were integrated as images.
In this approach, we define understanding of spatial references as
the ability of the system to:

(1) Ground spatial expressions (e.g. “at the left top corner”, “blue
colored”,...) in GUI elements

(2) Generate contextually appropriate responses that align with
the user’s intent

The underlying system builds on an existing in-car infotainment
platform connected to a cloud-based backend. The backend hosts
the LLM, with GPT-40 as the model in use, and handles LLM
requests. For the speech component, the speech input was pro-
cessed using Alexa’s speech-to-text service, and then the processed
text was sent to the LLM backend. Similarly, the speech output
was using the text-to-speech services to output the text with the
Alexa voice. For the image modality, screenshots of the naviga-
tion application as displayed on the screen were continuously
captured and sent to the backend in PNG format. Screenshots
were preprocessed to an optimized resolution of 800 x 400 pix-
els for reliable recognition of GUI text and elements. Pilot testing
ensured that map text and interface elements (e.g., icons) were
interpreted without errors in recognizing the elements. Lower reso-
lutions led to recognition errors, such as misread texts or responses
indicating an inability to interpret the image (e.g., “The image
is a bit blurry, but..”). In addition to the screenshot, structured
metadata about displayed GUI elements was supplied in a JSON
format. For example, the metadata specified domain-specific ele-
ments such as "blue_highlighted_route": "current_route"
or "red_lines": "traffic_congestion". This ensured that the
model’s reasoning was grounded not only in its general world
knowledge but also in the specific semantics of the automotive-
specific GUL It is specified that other visual elements within the car,
such as ambient lights, are not part of the GUI to avoid potential
conflicts with function calling, as they are also shown in colors. The
conversation context combined four elements: (1) conversational
history, (2) the user’s utterance, (3) the screenshot of the display,
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Figure 2: System architecture of the LLM-based voice user
interface (VUI) for spatial referencing in automotive navi-
gation. Speech is processed via speech-to-text and text-to-
speech. Screenshot capture service sends images to the back-
end. Screenshot capture service sends images to the backend.
LLM Backend (GPT-40) integrates conversation history, user
utterance, screenshots, and GUI metadata, and invokes the
resolve_spatial_reference() tool to ground expressions to spe-
cific GUI elements (in this example, the compass symbol).

and (4) structured metadata about the GUL Spatial referencing was
enabled through LLM function calling. Function calling extracts
structured information and matches a pre-defined schema, then
includes the response in the context of the conversation. When
the user referred to a visual element (e.g., "the lake above", "on the
left", "the middle icon"), the system invoked a function call named
resolve_spatial_reference(), which structured the model’s output
according to a predefined schema. The tool then appended the struc-
tured output, together with the GUI metadata and the screenshot,
to the ongoing conversation history, allowing the LLM to reason
about spatial relations in subsequent turns. By combining image in-
put through screenshots, structured metadata, and function calling,
our implementation demonstrates a practical approach to enabling
spatial referencing in LLM-based VUIs for automotive navigation.

5 Understanding Spatial References in
Automotive Navigation Tasks

We conducted a study in a standing vehicle, using tasks in the
context of navigation. With this study, we collect user utterances
and create a taxonomy based on the user utterances that were
spatial references.

5.1 Procedure

We designed the study in three parts. The first part included for-
malities and an introduction to the topic. Formalities also meant
filling out consent forms and a demographic questionnaire. We
introduced the users by letting them have the first interaction with
the system with a small task. The introduction task was to inform
themselves about a POI and navigate to it.

For the second part, we introduced three main tasks (see Sec-
tion 5.2) to the participants, which will be further explained in the
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following section. Participants interacted with the system to com-
plete the three tasks. At the beginning of each task, we introduced
the scenario verbally (e.g., “Imagine this scenario..”), explained the
specific goal, and clarified that the task would conclude once the
goal was achieved. We confirmed participants’ understanding be-
fore starting each task. Depending on the participant’s interaction
pace and the task complexity, each session lasted approximately
five to ten minutes.

The third and last part was an ending questionnaire that con-
cluded the study with general questions and evaluations. The study
was carried out in German. For a speech study, using participants’
mother tongue yields results that better reflect natural interaction,
as language proficiency does not add an additional barrier to cog-
nitive load [14, 31]. We translated all participants’ answers into
English when quoted.

5.2 Tasks

We selected three tasks that differed in their goals and levels of
interaction within the navigation system to ensure diversity in
user engagement. This selection allowed us to capture participants’
underlying motivations across varying interaction contexts. We
selected the three tasks to cover distinct interaction goals: a goal-
oriented and information-seeking task (POI Search), a spatial task
involving non-GUI elements and free map exploration (Map Naviga-
tion), and an exploratory and GUI-focused task without predefined
objectives (GUI Exploration), ensuring a comprehensive examina-
tion of user interaction behaviors across functional, spatial, and
exploratory contexts. The three authors selected the tasks through
an iterative design process to ensure that they aligned with the
overall study goals.

5.2.1 Point of Interest Search. In this task, we asked participants to
search for a charging station. The only condition was to search for
one with at least 200 Kilowatt hours (kWh). The task included ask-
ing for information about the charging station before choosing one.
There was no condition about which information exactly. Exam-
ples like opening hours, rating, and available spots were given, but
the participant had the option to keep their personal motivations
in mind. The task would end after the participants had chosen a
charging station and started the navigation towards it. The purpose
of this task was to include one of the most important use cases
within the navigation system, the POI search. The task allowed us
to investigate how often and in what ways users reference when
weighing options with POIs.

5.2.2  Multimodal Interaction in Map Navigation. In this task, we
showed participants a map element on a piece of paper. Their goal
was first to identify the element on the map, then obtain informa-
tion about it, and finally start the navigation to it. The task was
free in the interaction of using touch to locate the map to the lake.
Participants could freely use speech or touch to complete the task.
To avoid bias, the map element was consistently introduced as a
neutral "element on the map" without descriptive hints such as
"lake". With the automotive design choice, the map is very minimal
in its information. Most street names and other names of POIs are
not shown. This is unlike the usual GUIs inside of known naviga-
tion applications like Google Maps or Waze Navigation. This task
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examined how users combined GUI and VUI interaction, and how
spatial references emerged when participants located and described
map elements.

5.2.3 User Exploration of Graphical User Interface. The last task
was an exploration task to find out information about the navigation
application, focusing on the GUI only. Participants were encouraged
to ask about interface elements, icons, and map components. The
task concluded either after participants felt they had no further
questions or after five minutes had elapsed. The purpose of this task
was to observe spontaneous spatial referencing strategies and to
better understand participants’ motivations for referencing visual
content in a less structured and goal-oriented setting.

5.3 Apparatus

We conducted the study in a standing vehicle, meaning driving-
related interfaces were not accessible during the study. This setup
was chosen as an exploration to capture the full range of user
behaviors in navigation tasks without the cognitive load of driving.
Investigating navigation interactions in a standing vehicle also
reflects a relevant use case, since such tasks are often initiated
while the vehicle is stationary (e.g., before departure or during
breaks). The participants were sitting in the driver’s seat. We did
not use a wake word, but used the haptic microphone button at the
steering wheel for the VUI activation (see Figure 3a).

5.4 Participants

We recruited 21 participants (8 female and 13 male) from BMW
Group to take part in the study. The age range was 23 to 43 years
(M = 27.9, SD = 4.7). Although we did not assess driving expe-
rience, participants’ employment at BMW Group suggests a high
level of familiarity with in-vehicle systems and driving-related con-
texts. For experience with general speech assistant participants,
answers ranged from 1 to 4 (M = 3.05, SD = 1.00, on a scale of 0
to 5, where 0 = unknown and 5 = used regularly). The experience
with the automotive-specific speech assistant ranged from 0 to 3
(M =1.38,SD = 1.00 on a scale of 0 to 5, where 0 = unknown and
5 = used regularly). The affinity for technology interaction (ATI)
questionnaire was used to measure the participants’ tendency to
engage or avoid interactions with new technologies [8, 16]. The
ATI score ranged from 30 to 45 (M = 38.80, SD = 3.63), with 45
being the maximum score of the scale.

6 Results

The following section will go into the system performance of our
implementation to specify the challenges that occur later. Then dive
deeper into the taxonomy resulting from the user study. In total,
we collected 743 utterances in 63 runs. Out of these, we categorized
116 (15.61%) utterances as spatial references. The 116 spatial refer-
ences were examined through thematic analysis, as described in
Section 6.2.

6.1 Prototype Performance

Within the 116 spatial references collected in the study, we ana-
lyzed system responses based on correctness and tool usage. Each
response was labeled as either a correct or incorrect interpretation
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(a) Study setup from the participant’s view with the microphone
button on the right side of the steering wheel and the display with
the map in the middle.

(b) Alternative perspective showing the on-screen interaction on the
central display.

Figure 3: Study apparatus from two perspectives: partici-
pant’s seating view (a) and display-focused interaction view

(b).

of the visual context, and tool invocation was additionally checked
for whether it was correctly triggered. 72 out of 116 spatial refer-
ences were successfully interpreted. 17 times the responses were
misinterpreted, even though the tool was correctly invoked. In 23
cases (out of 743 utterances), the tool was called unnecessarily, for
example, when the user asked about a color unrelated to the display.
In 73 cases, the tool was not called, although it would have been
appropriate. Most of the cases occurred because a screenshot was
already in the context, leading the model to skip another tool call.
However, this can lead to mismatch as the screen content might
change within one run. In other cases where the tool was not called,
the LLM simply agreed with the user instead of grounding through
the tool. For example, when asked: “But at the top right, that’s the
current time showing on the screen right?”, the model responded:
“You are right, at the top right of the screen you can see the current
time!”. The different counts (e.g., correct responses, incorrect tool
calls, or missed tool opportunities) represent overlapping classi-
fications: even when a response was correct, the grounding tool
might not have been invoked, meaning the visual context was not
updated. Such cases could lead to inconsistencies if the on-screen
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Figure 4: Taxonomy of utterances scenario. A spatial ref-
erence can be built using the structure <TARGET> is refer-
enced to by <INFORMATION> in relation to <ORIGIN> to do
<MOTIVE>.

content changed, which is why the sum of these instances exceeds
116.
This analysis led to the following distribution:

e 72 correct vision responses, the system successfully inter-
preted the spatial reference and provided the correct answer.

e 17 incorrect vision responses, the system misinterpreted
the spatial reference, despite invoking the tool.

e 23 incorrect tool calls, cases where the system invoked an
unnecessary tool or selected the wrong one.

¢ 73 missed tool opportunities, cases where a tool should
have been invoked but was not.

Overall, this breakdown shows that while the system was able to
produce correct responses in more than half of the cases (56.03%),
errors frequently stemmed from unreliable tool invocation. This
highlights that the core challenge lies less in generating a correct
response once the appropriate tool is used, and more in the model’s
decision of when and how to invoke tool calls for spatial reasoning.

6.2 Utterance Taxonomy for Spatial References

To analyze the user behavior, we looked at each user utterance
that was a spatial reference and used thematic analysis to make
sense of the data [4, 30]. We used the tool Atlas.ti to code them. For
this, two researchers independently coded 20% of the study runs of
randomly picked participants. After this, a third researcher joined
the discussion of the codes. We refined the codes and formed a
joint code book. We repeated this process and measured the inter-
rater reliability using Krippendorf’s alpha [15]. After resulting in
Krippendorf’s alpha of 0.84, one researcher coded the rest of the
study runs. The codes provided insights into the varying ways
of spatial references and resulted in a taxonomy. The utterance
scenario taxonomy [33] was created to demonstrate the themes
relevant to building a spatial reference utterance. The themes are
TARGET, INFORMATION, ORIGIN, and MOTIVE. A spatial reference
can, therefore, be built using the following utterance structure:

<TARGET> is referenced to by <INFORMATION> in relation to
<ORIGIN> to do <MOTIVE>
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The taxonomy captures both the linguistic strategies and the
underlying intentions behind participants’ spatial references. By
filling the placeholders with one or multiple types of tokens, every
spatial reference of the study can be mapped fully (see Figure 4),
regardless of variations of phrasing. Table 1 provides an overview
of all categories within each theme, along with example utterances
and frequency of occurrence. To make the understanding easier, we
selected a representative utterance from the study to further explain
each theme in more detail: ‘T am looking for the name of this large,
long lake at the bottom of the screen.” In the following, the themes
will be described in more detail using the example utterance.

TARGET illustrates the element or entity being referenced in the
display, in this case, the “lake”. It indicates which visual component
the user’s spatial reference is directed towards. When combined
with the other themes, identifying the TARGET is crucial for inter-
preting the exact element the user is referring to.

INFORMATION describes the way in which the spatial reference
was formulated and what type of detail comes with it. This infor-
mation will then be used to pinpoint the exact element that was
spatially referenced to. In the example, the lake is described by
its size (“large”), shape (“long”), and its relative position (“at the
bottom of...”) A single utterance can combine multiple INFORMA-
TION categories to describe the visual element in detail. Thus, the
INFORMATION theme answers the question of how exactly the user
references visual elements.

The ORIGIN theme specifies the reference point or frame to
which the TARGET element is described. In other words, it captures
what the user relates the TARGET to. In the example, the lake’s
position is anchored in relation to the interface ( “at the bottom of
the screen.”). Other possible OrIGINs include the map itself, the
overall interface, specific elements like text, icons, or POIs within
the interface, or even the user’s own perspective. It is noted that
there can also be no relation worded, which results in the category
“implicit interface” This is due to the tasks revolving around the
interface and, therefore, the assumption that the interface is always
the OrIGIN if not otherwise mentioned.

MorTivE explains the underlying intent behind the spatial ref-
erence or what the participants want to achieve with it. Here, the
participant seeks POI information (“I’m looking for the name...”) and
expects an answer in that direction. By capturing the underlying
intention, MOTIVE explains not only what was said, but why it was
said.

6.3 Analyzing Relationships and Frequencies of
Spatial Reference Categories

The first frequency and the relation between the themes TARGET
and INFORMATION is shown in Figure 5a, with element description
and POI being the most prominent. Element description shows con-
nections to all INFORMATION categories, with particularly strong
links to absolute references, color, relative points, and size. POIs are
most frequently described using absolute references, relative direc-
tions, and relative points. The use of absolute references, relative
directions, and relative points across various TARGET categories
with high links underscores the importance of spatial communica-
tion, indicating a frequency of references in relation to other POIs
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(a) Frequencies and relationships where TARGET is referenced by
INFORMATION.

(b) Frequencies and relationships where TARGET is referenced by
MoOTIVE.

Figure 5: Frequencies and relationships of the two themes. (a)
TARGET referenced by INFORMATION. (b) TARGET referenced
by MOTIVE.

or GUI elements. When looking at the INFORMATION icon descrip-
tion and textual description, it is noticed that it is almost only in
relation to GUI elements, indicating that other TARGET categories
are rarely being described by icons or textual descriptions.

As seen in Figure 6, the relations and frequencies of the <ORrIGIN>
in relation to <INFORMATION> are shown. With absolute in the IN-
FORMATION theme being the most frequently used, it draws mostly
to the interface as a whole and the map. The system as a whole is
often mentioned as “on the navigation system” or ‘on the display’.
For the map, the same is applied, but mentioning the map instead.
“On the map” is by far the most mentioned, with 28 quotations
within 116 spatial references (24.14%). Map and Interface are the
most prominent categories for the OrIGIN theme. The frequency
of the implicit interface in ORIGIN suggests that some spatial refer-
ences are made without explicit relation to another element. This
is possibly due to the shared understanding or the context of the
tasks, which revolve around the interface as assumed ORIGIN.

Figure 5b shows the relations and frequencies of the themes of
TARGET and MOTIVE. Showing the motivation of participants dur-
ing the study, the most frequent MoT1vEs were GUI information,
map information, and POI information. This is correlating with the
tasks, one being the GUI exploration and the other being a task
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Table 1: All Themes and Categories of Spatial Referencing Utterances with examples from the study or further descriptions

Occurrences
Theme Category Utterance Examples or Descriptions Frequency
Points of Interest Specific locations, landmarks, or destinations of interest, “lake”, “charging station” 38.02%
i GUI Element GUI components or other interactive elements, “icon”, “button”, “widget” 38.02%
g Element Description Non-specific descriptions about the appearance of visual content without necessarily naming the 26.44%
ﬁ element, “area”, “options”
= Traffic and Navigation  Elements related to the navigation context, such as displayed routes or traffic conditions “route”, “red 1.65%
traffic sections”
Absolute Locations that can be anchored to the overall interface, “in the middle of the screen..”, “on the 44.63%
display..”
- Relative Direction Direction described relative to another element; “under..”, “south of..”, “right of..” 26.45%
IS Relative Point Position described relative to another element; “at the bottom right of..”, “right next..” 23.97%
g Icon Description “burger icon”, “arrow” 14.87%
E Size “big”, “smaller” 9.92%
£ Interaction Context References to the participant’s interaction state; “the ones I'm seeing right now..” 9.10%
= Color “blue”, “green” 8.26%
Textual Description On- screen text used as identifier; “button with the N”, “icon with 100”, “the one that says SEARCH” 6.61%
Function Functionality associated with the element rather than their appearance, “the one you can search 4.96%
with”, “ventilation symbol”
Shape “elongated”, “circles” 2.48%
Name of GUI Element  Explicit name or label of the GUI element, “clock”, “navigation menu” 2.48%
GUI Touch Reference  Explicitly tied to involvement of touch interactions, “the point that I marked” 0.83%
Map Reference anchored to the displayed map; “.. of the map” 33.06%
Interface The overall display or screen; “..of the display”, “...to the screen” 27.27%
Z Points of Interest Locations, landmarks or names of cities; “lake” 17.36%
g Implicit Interface No explicit mentioned ORIGIN, but the implicit interface as assumption 15.70%
S Text On-screen text read and cited diractly; “button that says SEARCH” 12.40%
Icon “compass icon”, “mountain icon” 5.79%
1st Person Perspective ~ Participant’s own viewpoint as anchor, “left of me..” 2.48%
GUI Information Function or meaning of interface elements; “What does this button do..” 46.29%
Q POI Information Details about a POI; “What’s the name of this lake..” 26.45%
E Map Information Requests aimed at interpreting map content; “What’s this blue lake on the map..” 16.53%
) Relocation of Map Instructions to move or change the map in some form; “Show me on the map” 11.58%
= Navigation Instructions to start a navigation or modify a route; “I want to get to xy”, “Select the left route for me” 4.13%
Correction Revising or clarifying a prior utterance; “No, I meant..”, “I was talking about...” 3.31%

aimed at asking for a POL Results reveal a strong interconnected-
ness between GUI elements and their associated information, as
well as POIs and their related context. There is a strong connection
between a GUI element and GUI information. Example utterances
were “What’s that icon upper right, next to the clock?” or “What
can I do with the arrow next to search?”. This indicates that asking
about a GUI element often also aims to obtain information about its
function or meaning. Similarly, POI references are strongly linked
to inquiries about POI details such as names, ratings, or other con-
textual information, as well as to navigation and map manipulation.
These connections of the GUI element and POI show that most of
them are referenced with the motivation of staying in the same
topic and to be maintaining a topical continuity. Map information
is shown to be the most flexible, with a connection to all TARGET
categories. Anything map-related is included in map information,
like “What is currently shown on the right side of the map?” or “What
do the dark blue areas on the map mean?”.

7 Discussion

The following section discusses the implications of our findings
for the design and reliability of spatial referencing. We reflect on
both technical implications and user interaction patterns that shape
spatial referencing in automotive contexts.

7.1 Reliability of MLLMs for Spatial Grounding

Our evaluation of the prototype highlights both the potential and
the current limitations of MLLMs, specifically using the GPT-40
model, when used for spatial grounding in automotive interfaces.
While rule-based or existing systems with explicit access to the
GUI state information could achieve higher technical reliability, our
goal was not to evaluate system performance but to investigate
user interaction patterns enabled by emerging MLLM capabilities.
MLLMs were chosen because they can process both textual and
visual inputs, allowing participants to use natural, unconstrained
spatial references instead of predefined command structures, which
might not be understood in a purely deterministic implementation.
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Figure 6: Frequencies and relationships of the two themes
where ORIGIN is referenced by INFORMATION.

Out of 116 spatial references, 72 responses (62.07%) were classified
as correct, showing that the system is able to successfully interpret
visual context and link user utterances to GUI or map elements
in more than half of the cases. However, the remaining instances
reveal several reliability issues that must be considered. A central
challenge lies in the consistency of tool invocation. The model
occasionally invoked the spatial grounding tool when it was not
needed (23 instances) or failed to do so when appropriate (73 in-
stances). Almost all these omissions occurred because a screenshot
was already present in the context. While this mostly did not lead to
incorrect responses in our relatively static scenarios, the proportion
of correct responses could likely have been higher if the model had
consistently invoked the tool for each spatial reference. In other
cases, the model simply agreed with the user instead of grounding
the response, as in the example: “But at the top right, that’s the cur-
rent time showing on the screen right?” - to which the model replied,
“You are right, at the top right of the screen you can see the current
time!”. This behavior undermines reliability, since display content
may change, and the lack of grounding risks inconsistencies.

Such issues illustrate the current technical limitations of MLLMs
for spatial reasoning. To increase reliability, future approaches
should focus on three directions: (1) improving the detection of
when spatial grounding is needed to reduce missed and unnecessary
tool calls, (2) improve models by fine-tuning with automotive GUI-
specific data, and (3) providing transparency to the user, for example
by highlighting the element that the system grounded its response
on, so that errors can be made transparent to the user to be corrected.
Beyond improving technical reliability, these findings also provide
guidance for the design of spatial referencing. Understanding where
spatial reasoning may fail helps designers anticipate and work on
how to make system reasoning more transparent.
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7.2 Effects of Task Context on Spatial
References

The proposed taxonomy demonstrates that spatial references are
structured through four key themes: TARGET, INFORMATION, ORIGIN,
and MoTIVE. Results show that 15.61% (116 out of 743) utterances
contained spatial references during the study. TARGETs most fre-
quently include Points of Interest (POIs) and GUI elements, with
information conveyed through absolute and relative positioning.
Maps and interfaces emerged as primary reference ORIGINS. Mo-
TIVEs centered on seeking GUI information, POI details, and map
understanding. It is noteworthy that the nature of the tasks involved
a heavy focus on the display. The two tasks in question are one
with the task of asking about a specific POI displayed on the screen,
and the other of exploring inside the GUL Resulting in 20.07% (55
out of 274) spatial references in the second task and 20.63% (59
out of 286) spatial references during the third task. This demon-
strates a task-dependent pattern in spatial reference usage, which
correlates with the most frequent motives: GUI information and
POI information. The first task, which was about finding a suitable
charging station, only showed a quote of 1.09%, suggesting that
participants did not require the use of references to the screen when
searching for charging stations. This finding reveals a distinction
between task types. POI search that can be accomplished through
voice commands alone versus tasks that require visual exploration
and reference to on-screen elements. Participants seemed to be
satisfied with only the voiced information in combination with the
textual information in the context of POI search. The only scenarios
showed the need for “show me the charging station on the map,” so
taking actions inside the map and relocating it.

7.3 User Strategies for Spatial Referencing and
Topical Continuity

Insights from the results reveal the diversity of referencing strate-
gies employed by participants. For instance, GUI elements were
often referenced with the motive of understanding their function,
as evident from utterances like “What’s that icon upper right, next
to the clock?” or “What can I do with the arrow next to search?”
On the other hand, POIs were frequently linked to navigation and
map interactions. The strong connection between TARGETs and
Mort1vEs suggests that users maintain topical continuity through
spatial references (see Figure 5b). For example, when referencing a
GUI element, the motive was often to seek information about that
element’s functionality or purpose within the interface. Similarly,
POI references were commonly associated with motives related
to navigation, map manipulation, or gathering details about the
specific POI. When tasked with referencing icons, participants of-
ten used other GUI elements, like other icons inside the GUI, as
a reference. There seems to be a mental connection between the
type that is referenced and the object used as a relation. When
it comes to referencing strategies, the map, the interface, or the
implicit interface as a whole was frequently used as the OriGIN
to make spatial references, see Figure 6. This tendency suggests
that participants preferred to refer to the interface holistically with
directional cues like “left” or “right” instead of taking the additional
mental step of describing the specific element in further detail. For
instance, participants would say “on the map” or “on the display”
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rather than providing a more granular description of the TARGET
element’s location or context within the interface. Our analysis also
reveals users mostly used absolute positioning (44.63%) and relative
directional (26.45%) or relative point (23.97%) references. This is
often used in combination with the holistic approach mentioned
before. The use of absolute positioning by phrases like “in the mid-
dle of the screen” or “on the display” suggests that users tend to
reference within the overall spatial framework of the interface. Rel-
ative references were the second most common strategy, showing
how users create relationships between elements to disambiguate
their spatial references. In general, users opt for broader reference
frames that require less cognitive effort to formulate, especially in
context with VUIs, where there feels like there is less time to think.

7.4 From Taxonomy to Insights from Spatial
Referencing Patterns

The taxonomy provides a structured way of analyzing how users
formulate spatial references in in-car interactions. By decompos-
ing utterances into TARGET, INFORMATION, ORIGIN, and MOTIVE, it
becomes possible to identify recurring strategies and contextual de-
pendencies for future design considerations. Further analysis with
relationships and frequencies of spatial reference categories also
implies the most associated themes. Beyond its descriptive value,
the taxonomy also offers implications for in-car VUIs. First, the
strong alignment between TARGET and MOTIVE categories suggests
that systems can anticipate likely user intents (e.g., GUI elements
typically prompt questions about functionality, POIs about names
or details). Second, the dominance of absolute and relative position-
ing indicates that systems should be optimized to interpret broader
references such as “on the left” or “in the middle” rather than inter-
preting precise and descriptive formulations. Third, the frequent
reliance on implicit frames of reference highlights the importance of
treating the display or map as a default origin, reducing the need for
users to explicitly specify context. In addition to informing design,
the taxonomy can also support model performance. Its structured
categories can provide a blueprint for constructing higher-quality
datasets that better capture how users naturally reference in au-
tomotive contexts. While these implications are rooted in in-car
interactions, the underlying mechanisms of spatial references are
not domain-specific. Researchers developing spatial referencing
for areas like robotics or augmented reality could adopt this tax-
onomy to train or evaluate models that interpret human spatial
language under dynamic visual conditions. For example, synthetic
utterances could be generated following the taxonomy’s structure,
or human-annotated datasets could be aligned with its categories
to create utterance-response pairs. Such datasets would enable
fine-tuning of MLLMs on automotive-specific GUIs and map-based
applications.

7.5 Cognitive Demands in Voice-Based
Interactions

During the study, participants had the opportunity to explore the
interface. Even under such conditions, participants predominantly
employed cognitively efficient strategies such as absolute references
(e.g., “in the middle of the screen”) or relative references (e.g., “to the
right of the burger icon”). This suggests a preference for low-effort
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expressions in voice-based spatial referencing. Speech interaction
itself can be seen as a constraint, as long breaks will cancel the
input time window. Time pressure after pressing the push-to-talk
button and the need for input likely reinforced the preference for
short, absolute, or relative expressions over more elaborate descrip-
tions of elements. Another factor may be participants’ limited prior
experience with automotive-specific voice assistants (M = 3.05)
compared to automotive-specific assistants (M = 1.38). This could
have reduced participants’ confidence in making more complex
and automotive-specific references. Although participants were
introduced through an example task, they had little time during
the study setup to develop strategies before starting the study. This
can make it challenging to adapt to the learning curve and create
a barrier of not knowing what is possible. As users become more
comfortable with the new paradigm over time, they can adapt and
interact with the feature more naturally. These findings show how
cognitive constraints, such as time pressure or limited feedback,
shape the linguistic strategies users employ when communicating
spatial references. These insights can inform the design of voice-
and vision-based interfaces beyond automotive use, where similar
temporal and attentional demands exist.

7.6 Limitations

While enabling spatial referencing for LLMs presents opportunities
for driver-vehicle interaction, several limitations must be acknowl-
edged. The limitations of this work are resolved around model
capabilities and the restricted scope of our current implementation.

First, the current output generation of the model in use (GPT-
40) shows inconsistencies, especially in spatial reasoning. Even
when provided with a contextual image input, models are heavily
reliant on the textual information, either taking the structure of
the given object format in the data or plain text to generate output
[41]. An example is “the route in the middle”, where the reference
is to a displayed route on the display in contrast to the textual
route data object. Consequently, our study cannot conclude that the
LLM genuinely grounds spatial references in visual content alone.
The results reflect performance in a hybrid setup where textual
cues remain dominant. Although our prompts already included
examples and counterexamples of how spatial references should
be resolved, the model still showed unreliable behavior in deciding
when to invoke the tool. One contributing factor is that we built on
top of an existing LLM backend that already provides a large set
of tools. This suggests that limitations go beyond simple prompt
engineering and relate to the model’s underlying mechanism for
tool invocation [35, 36]. More prompting strategies or fine-tuning,
improved orchestration across available tools, or fine-tuning with
domain-specific data to reduce such errors could reduce such errors.

Additionally, the integration was limited to the navigation appli-
cation. Integrations of the touch modality and all other components
that can be seen inside and outside of the vehicle (e.g., secondary
displays, haptic buttons) were not included. The implementation is
restricted to the display of the navigation system and what is shown
there. The minimalistic design of the tested navigation GUI might
not give enough content to reference spatially. By restricting spatial
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referencing to the central display and within the navigation appli-
cation, the system misses opportunities for more comprehensive
and intuitive interactions across the entire vehicle interface.

7.7 Future Work

We conducted the study in a stationary vehicle providing a con-
trolled environment to observe user behaviors. Future work should
extend to dynamic driving conditions, where divided attention and
changing map content create additional challenges. Spatial refer-
ences such as “on the left” may quickly shift or disappear as the map
updates. Here, transparency (e.g., a VUI-specific GUI that highlights
referenced elements) could reduce cognitive load and allow users
to verify or correct grounding, thus supporting trust in the system.

While our prototype focused on spatial references within the
graphical interface, future research could explore how spatial lan-
guage and multimodal input, such as gesture or gaze, can integrate
across modalities and environmental contexts. This consideration
becomes increasingly important as users may not clearly distin-
guish the system’s perceptual boundaries. If their mental model
assumes that the system “sees” the same visual layer as they do,
spatial references may naturally extend beyond the in-car central
information display.

Second, improvements in spatial reasoning are expected as re-
search in MLLMs progresses. Fine-tuning with domain-specific GUI
data could reduce hallucinations and improve grounding reliabil-
ity beyond what prompting alone can achieve [25]. Recent work
shows that models trained on image-text data benefit more from
few-shot learning [6]. Interleaved image-text data also describes
relationships within an image. Instead of image-text pairs like ‘a
giraffe,” captions for interleaved image-text data would be a giraffe
standing behind a metal fence. The giraffe appears to be looking
towards the ground.” Targeted pre-training and fine-tuning with
automotive-specific examples could therefore strengthen reliability
in handling spatial references.

Finally, spatial language is culturally and linguistically diverse.
Even within English, dialects differ in how spatial relations are
expressed [10]. Expanding to other languages and cultural contexts
would provide valuable insights for designing adaptive systems
that accommodate such variations.

8 Conclusion

In this work, we examined the integration of spatial referencing for
LLM-based VUIs for automotive navigation. Through an in-vehicle
study, we analyzed user interactions with visual content on naviga-
tion screens, highlighting how users refer to and describe on-screen
elements with a taxonomy. The creation of a taxonomy for spatial
references provides insights into the different ways users interact
with visual information, with a preference for absolute and relative
spatial references. Most users frequently rely on absolute and rela-
tive descriptions, often drawing on salient traits or nearby elements
as anchors for their reference. While the study demonstrates an
implementation of spatial referencing in automotive contexts, it
also shows several challenges. Future research directions could fo-
cus on improving spatial reasoning capabilities, exploring cultural
and linguistic differences in spatial descriptions, and investigating
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the challenges of spatial referencing in dynamic driving scenar-
ios. As vehicles evolve towards higher levels of automation, the
role of in-vehicle interfaces may shift, potentially increasing the
importance of intuitive spatial referencing. Spatial referencing can
play a central role by allowing users to seamlessly connect spoken
language with visual and environmental context. The integration of
spatial referencing in automotive interfaces provides the potential
to make in-vehicle VUI and GUI interaction truly hands-free, more
natural, and more human-like.
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