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Figure 1: Example of spatial referencing in in-car navigation: user asks “What’s the name of the lake in the middle of my

screen”. System replies by grounding to the display screenshot. Categories of taxonomy (POI information, Points of Interest,

Absolute, Interface) can be mapped to the user utterance.

Abstract

In human-human conversations, a shared visual layer allows con-

versation partners to refer to visual elements through spatial refer-

ences - such as “on the left” or “the blue pen next to you”. Current

voice user interfaces, however, lack the context needed to interpret

such references, limiting their naturalness. This capability is par-

ticularly valuable for in-car interactions, where combining voice

and graphical interfaces offers opportunities for more fluent and

effective interaction while driving. In this work, we integrate a mul-

timodal large language model for an in-car infotainment system to

enable the interpretation of spatial references. Through a user study

(N=21), we collect and analyze user utterances to investigate within

the context of automotive navigation tasks. As a result, we created

a taxonomy that categorizes diverse strategies participants used

to reference on-screen elements. Our findings contribute a frame-

work for understanding spatial referencing behavior in vehicles

and inform the design of future multimodal in-car systems.
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1 Introduction

In-vehicle interaction often involves multiple interfaces simultane-

ously, such as the built-in infotainment system, the steering wheel,

and haptic buttons [27]. The primary interaction modality for in-

fotainment functions is usually a graphical user interface (GUI).

For example, navigation systems provide drivers with a visual rep-

resentation of routes and points of interests (POIs) inside maps

and navigation applications. While GUIs are a core part of automo-

tive interfaces, voice user interfaces (VUIs) offer advantages with

a hands-free nature and lower visual distraction [23, 26]. Recent

advances, particularly the integration of large language models
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(LLMs) in VUIs, present an opportunity to make conversations

more natural and human-like [20]. One decisive aspect in human-

human conversation is our ability to reference spatially in a shared

visual layer. For example, when we are standing next to each other,

we use verbal spatial referencing to speak freely about the location

of objects relative to us, like what is to our “left” or “right.” Other

examples could be using shape descriptions like “heart-shaped” or

colors like “green.” Spatial referencing, applied to the GUI inside the

vehicle, allows the driver to reference visual elements on the GUI

using natural language, such as “pick the route that is highlighted in

blue” or “take the marker on the bottom right.” Although the LLM’s

capacity to process natural language appears to make this form of

communication feasible in the vehicle [29], little is known about

how and why users would use spatial referencing and what kind

of technical solutions are necessary. Further research is needed to

understand user interaction patterns before identifying solutions

that can best support a seamless user experience.

In recent research, the modality of including images as contex-

tual input in LLMs was introduced and explored as multimodal

large language models (MLLMs) [12, 34, 38]. This modality has

been used in visual question answering (VQA) of users asking gen-

eral questions about pictures [1, 11]. Possible questions are mostly

generalized, like “What’s the name of the building?” or “Which dog

breed is this?”, focusing on the big picture of the image. Despite

these advancements, visual MLLMs still encounter difficulties gen-

erating correct outputs with a tendency to produce erroneous or

hallucinated responses [10, 18]. Tackling these challenges, research

investigating spatial referencing is largely resolved around the im-

provement of spatial reasoning, which describes the ability of a

system to link spatial expressions (e.g., “in front of”, “to the left of”,

“above”) to concrete visual elements. In comparative evaluations, hu-

mans achieve accuracies above 95%, while state-of-the-art MLLMs

only reach around 70% accuracy on benchmarked spatial reasoning

tasks [19]. Spatial referencing has also been investigated in human-

robot interaction. Li et al. [17]’s findings highlight how ambiguity

can reduce clarity and accuracy of natural language. Instructions

that were perspective-independent (e.g., “the yellow block in the

middle”) were much easier to follow than those relying on unspec-

ified viewpoints (e.g., “the block to my left”), which often led to

misinterpretations. Within the domain of GUI understanding, Ferre-

tUI [39], for instance, provides an MLLM enhanced with the ability

to ground and reason about on-screen elements. By dividing GUIs

into sub-images for separate encoding and fine-tuning the model on

a curated dataset of questions about the GUI. Further advances in

grounding frameworks and improving MLLM performances have

led to state-of-the-art systems for GUI understanding [2, 9, 37, 39].

While these methods advance GUI understanding, they are domain-

specific and remain limited to web, desktop, or mobile settings.

VUIs rely on speech, which also introduces unique challenges for

spatial referencing, since users must describe GUI elements verbally.

In automotive contexts, visual content is dominated by navigation

systems with maps and route information, which provide a particu-

larly rich source of graphical context. However, empirical research

appears to be lacking on how users interact with such systems in

real time and investigates how drivers would spatially reference in

in-car GUIs. To address this gap, we implement a prototype in-car

VUI that integrates MLLMs with image inputs to enable spatial ref-

erencing within the navigation context. We conducted a user study

to collect and analyze how drivers spatially reference in-car GUIs

during navigation tasks. Our contributions are: (1) the design and

implementation of a spatial-referencing-enabled in-car VUI, and (2)

empirical insights into the challenges and opportunities of spatial

referencing in automotive contexts, derived from a controlled user

study conducted in a stationary vehicle.

Using the results of the study, we used thematic analysis to create

a taxonomy that represents how users use spatial referencing to

speak about displayed content on the screen in the navigation con-

text. We further analyzed the frequency and sequence of different

reference types. The implementation of spatial referencing presents

a step forward in creating a hands-free and intuitive VUI and GUI

experience inside the vehicle. At the same time, the taxonomy will

provide an understanding of user behavior that will help with the

continuous design and implementation of human-like VUIs.

2 Related Work

“There are classes of things that are done better with

speech and natural language than with direct manip-

ulation...And when speech and language interfaces

becomemore conversational, theywill take their place

along with direct manipulation in the interface.” [7]

Already in the 1990s, Don et al. [7] envisioned speech as a natural

complement to GUIs, suggesting that conversational VUIs would

one day blend seamlessly with direct manipulation. One aspect of a

blend of VUI and GUI is the ability to reference what you see in the

real world, thus enabling spatial referencing. We first describe prior

research on spatial references in conversational speech interaction

and their role in in-car systems. We then dive into the topic of how

such spatial references could be enabled and what has been done

in that domain.

2.1 Interactions through combining VUI and

GUI and the Automotive Context

With the launch of commercial VUIs, speech interaction has gained

popularity. Since then, speech interactions have become more well-

known, and an increasing number of assistants are being released by

tech giants, trying to improve the experience and find use cases for

speech assistants. However, a study byMahmood et al. [20] revealed

that the most common uses of VUIs still include system-based

commands like asking for the weather (70% of the participants) and

setting reminders, timers, and alarms (65% of the participants). Thus

showing that system-based commands like “What’s the weather?”,

“Set timer to 10 minutes.” and “Set a reminder for 2 PM.” are still

most known to users. This raises the question, even if technology

is moving forward, when will speech interaction take the shift to

a more human-like conversation? When referring to VUI design

guidelines, a meta-analysis, Murad et al. [22], found that one of

the guidelines was to design conversational interaction that maps

to real-world conversational norms and dialogue patterns. VUI

interactions should align with the user’s mental model, and part of

this could also be applied to the information from a shared visual

layer. Research combining speech with gaze cues demonstrates the

benefits of multimodality for spatial referencing. When participants
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could see their partner’s gaze position in addition to hearing speech,

they completed tasks more efficiently and with greater precision

[24]. This suggests that speech alone may be insufficient in contexts

requiring spatial grounding, such as in-vehicle interaction, where

shared visual references could reduce ambiguity. When it comes

to in-vehicle visualization, more and more car functions are being

displayed in the digital realm. Automotive is experiencing a shift

from traditional physical buttons to GUIs in car interiors. Switching

buttons, knobs, and switches with interactive displays [5, 21, 27]. In

the specific use case of navigation, the GUI comes in as a great way

to present themap and information about routes, POI, and occurring

route incidents. A focus in the automotive context is the navigation

use case, with the challenges of the most visually and graphically

displayed information. The role of a VUI is hands-free use and

requires the least eye glances, but at the same time, it requires a

cognitive load to process the information [26]. Most of the time,

the information is not even presented in any visual way. If the GUI

visually presents the information, it requires drivers’ attention and

the most eye glances. Integrating speech and visual references could

reduce these trade-offs, creating more natural, efficient in-vehicle

interactions. Spatial terms in speech can serve as a bridge between

what users see and what they say, enabling conversations about

shared visual content. However, spatial references are inherently

ambiguous, as they can be interpreted egocentrically (relative to the

speaker) or allocentrically (relative to the conversational partner’s

perspective) [17]. Understanding these nuances is key to effective

multimodal system design.

2.2 Spatial Reasoning for Multimodal Large

Language Models

The technical evolution from LLMs to MLLMs marks a significant

step forward in the work and research of LLMs. MLLMs are mod-

els that include reasoning not only on text but also on audio and

images. In work focusing on GUI interpretation, FerretUI used an

MLLM to enhance the understanding of mobile screens. FerretUI

specifically addresses the challenges of processing mobile screens,

where elements like icons and text are often small and detailed.

Improvements in visual detail were handled by dividing the GUI

into sub-images for separate encoding [39]. Training the model

on a curated dataset of elementary and advanced questions about

the GUI further enhances its ability to perform advanced tasks like

"Where can I find the app store?". This approach surpassed GPT-4V

on all the elementary UI tasks.

However, integrating the vision modality also comes with lim-

itations. It has been demonstrated that MLLMs tend to provide

responses that are inconsistent with real-world knowledge or user

inputs, which are known as hallucinations [10]. Hallucinations with

vision-based MLLMs are described as image content answering that

is inconsistent with the image content itself. MLLMs have been

known to suffer from this phenomenon.

Recent work also implies that MLLMs do not generate output

heavily based on visual information when textual context is pro-

vided. When given both visual and text data, MLLMs tend to rely

more on the text. When given mismatched visual and correct text

data, the performance is not necessarily hindered, implying even

more that MLLMs are not heavily reliant on visual context, es-

pecially when textual clues are provided. Not only that, but the

absence of visual input even leads to a better accuracy across all

questions, showing that visual inputs might even hinder the accu-

racy [32, 41]. This contrasts with human capabilities, where visual

cues might aid in understanding.

Spatial reasoning is an especially difficult area. Studies show

that MLLMs struggle with basic relations such as “left of” or “right

of,” rarely exceeding 60% accuracy even with extensive training

data [3, 13, 19]. In a study by Liu et al. [19], most visual-based

MLLMs struggled to exceed 60% accuracy even with more training

examples. Training objectives partly explain this gap: contrastive

models perform somewhat better than generative ones, but both

remain weak at handling spatial terms [13]. A further obstacle lies

in pre-training data. Even if this is the case, prepositions are rarely

needed to make the model perform well on the contrastive training

objective [13, 40]. It is also noted that pre-training models use large

datasets like LAION, which was also used to train OpenCLIP [28].

In LAION, prepositions like “under” or “left of” only occur 0.2% of

the time [13]. When prepositions are used, they can be ambiguous

due to the viewer’s perspective or vary in interpretation of the same

preposition [3, 13]. “In front of” could mean close to the viewer

of the image or ahead of the elements that are portrayed in the

image. For example, it might be shown two images or two pieces

of text and asked to determine which is most relevant to the task.

These models also rely on the large batch size to differentiate similar

examples, but not from prepositions. For example, distinguishing

“Golden retriever” from other dog breeds. Some prepositions are

much more common than others. For example, “dog under the ta-

ble” vs. “dog on the table.” These limitations matter directly for

multimodal VUI GUI systems in cars, where spatial referencing is

essential for grounding speech in shared visual context. Stappen

et al. [29] proposed one of the first applications of MLLMs in vehi-

cles, focusing on diagnosing technical issues by combining verbal

prompts with visual inspection. Such multimodal approaches could

yield faster and more personalized solutions, but only if spatial

reasoning capabilities are strengthened.

3 Research Questions

We investigate how to enable spatial referencing for LLM-based

VUIs in the car and investigate user behavior with such interaction

through the following research questions:

Research Question 1. While prior work has demonstrated multi-

modal LLM capabilities, such as VQA, research has largely focused

on general scene understanding (e.g., “Which dog breed is this?”,

“What do I see in the picture?”) rather than the interpretation of spa-

tial references [1, 11]. Existing research emphasizes the limitations

of spatial reasoning, yet there is limited understanding of how such

models can be adapted to handle spatial references in task-specific

contexts [10, 18]. Therefore, we pose our first research question:

RQ1: How can LLM-based VUIs be designed to understand

user utterances containing spatial references?

Research Question 2. Prior research in the automotive domain

has not yet fully explored spatial referencing for automotive GUIs.

Navigation applications, for example, are highly visual, provide
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interactive maps, and are spatially structured. Enabling this novel

type of interaction raises questions about how users will interact

with the system, which strategies will be impaired to express spatial

references, and in which situations they will be motivated to do

so. Speech enables another complex challenge that provides a fast

and dynamic interaction modality [22, 26]. Understanding user

behavior will help address the challenges in enabling this type

of interaction in LLM-based VUIs. Accordingly, we address the

following second research question:RQ2:Howdo users structure

and utter spatial references during interactions with a VUI

in in-vehicle navigation tasks?

4 Enabling Spatial Referencing for a Voice User

Interface in the Car

To address RQ1, we implemented a prototype system that allows

an LLM-based VUI to process spatial references in the context of

an automotive infotainment system, specifically the navigation

application, as shown in Figure 2. Our approach combines the

multimodality of LLMs, which refers to their ability to process

and integrate different data modalities, such as text, images, and

structured data, with LLM function calling. In this case, screenshots

from the central display in the vehicle were integrated as images.

In this approach, we define understanding of spatial references as

the ability of the system to:

(1) Ground spatial expressions (e.g. “at the left top corner”, “blue

colored”,...) in GUI elements

(2) Generate contextually appropriate responses that align with

the user’s intent

The underlying system builds on an existing in-car infotainment

platform connected to a cloud-based backend. The backend hosts

the LLM, with GPT-4o as the model in use, and handles LLM

requests. For the speech component, the speech input was pro-

cessed using Alexa’s speech-to-text service, and then the processed

text was sent to the LLM backend. Similarly, the speech output

was using the text-to-speech services to output the text with the

Alexa voice. For the image modality, screenshots of the naviga-

tion application as displayed on the screen were continuously

captured and sent to the backend in PNG format. Screenshots

were preprocessed to an optimized resolution of 800 x 400 pix-

els for reliable recognition of GUI text and elements. Pilot testing

ensured that map text and interface elements (e.g., icons) were

interpreted without errors in recognizing the elements. Lower reso-

lutions led to recognition errors, such as misread texts or responses

indicating an inability to interpret the image (e.g., “The image

is a bit blurry, but...”). In addition to the screenshot, structured

metadata about displayed GUI elements was supplied in a JSON

format. For example, the metadata specified domain-specific ele-

ments such as "blue_highlighted_route": "current_route"
or "red_lines": "traffic_congestion". This ensured that the

model’s reasoning was grounded not only in its general world

knowledge but also in the specific semantics of the automotive-

specific GUI. It is specified that other visual elements within the car,

such as ambient lights, are not part of the GUI to avoid potential

conflicts with function calling, as they are also shown in colors. The

conversation context combined four elements: (1) conversational

history, (2) the user’s utterance, (3) the screenshot of the display,

Figure 2: System architecture of the LLM-based voice user

interface (VUI) for spatial referencing in automotive navi-

gation. Speech is processed via speech-to-text and text-to-

speech. Screenshot capture service sends images to the back-

end. Screenshot capture service sends images to the backend.

LLM Backend (GPT-4o) integrates conversation history, user

utterance, screenshots, and GUI metadata, and invokes the

resolve_spatial_reference() tool to ground expressions to spe-

cific GUI elements (in this example, the compass symbol).

and (4) structured metadata about the GUI. Spatial referencing was

enabled through LLM function calling. Function calling extracts

structured information and matches a pre-defined schema, then

includes the response in the context of the conversation. When

the user referred to a visual element (e.g., "the lake above", "on the

left", "the middle icon"), the system invoked a function call named

resolve_spatial_reference(), which structured the model’s output

according to a predefined schema. The tool then appended the struc-

tured output, together with the GUI metadata and the screenshot,

to the ongoing conversation history, allowing the LLM to reason

about spatial relations in subsequent turns. By combining image in-

put through screenshots, structured metadata, and function calling,

our implementation demonstrates a practical approach to enabling

spatial referencing in LLM-based VUIs for automotive navigation.

5 Understanding Spatial References in

Automotive Navigation Tasks

We conducted a study in a standing vehicle, using tasks in the

context of navigation. With this study, we collect user utterances

and create a taxonomy based on the user utterances that were

spatial references.

5.1 Procedure

We designed the study in three parts. The first part included for-

malities and an introduction to the topic. Formalities also meant

filling out consent forms and a demographic questionnaire. We

introduced the users by letting them have the first interaction with

the system with a small task. The introduction task was to inform

themselves about a POI and navigate to it.

For the second part, we introduced three main tasks (see Sec-

tion 5.2) to the participants, which will be further explained in the
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following section. Participants interacted with the system to com-

plete the three tasks. At the beginning of each task, we introduced

the scenario verbally (e.g., “Imagine this scenario...”), explained the

specific goal, and clarified that the task would conclude once the

goal was achieved. We confirmed participants’ understanding be-

fore starting each task. Depending on the participant’s interaction

pace and the task complexity, each session lasted approximately

five to ten minutes.

The third and last part was an ending questionnaire that con-

cluded the study with general questions and evaluations. The study

was carried out in German. For a speech study, using participants’

mother tongue yields results that better reflect natural interaction,

as language proficiency does not add an additional barrier to cog-

nitive load [14, 31]. We translated all participants’ answers into

English when quoted.

5.2 Tasks

We selected three tasks that differed in their goals and levels of

interaction within the navigation system to ensure diversity in

user engagement. This selection allowed us to capture participants’

underlying motivations across varying interaction contexts. We

selected the three tasks to cover distinct interaction goals: a goal-

oriented and information-seeking task (POI Search), a spatial task

involving non-GUI elements and free map exploration (Map Naviga-

tion), and an exploratory and GUI-focused task without predefined

objectives (GUI Exploration), ensuring a comprehensive examina-

tion of user interaction behaviors across functional, spatial, and

exploratory contexts. The three authors selected the tasks through

an iterative design process to ensure that they aligned with the

overall study goals.

5.2.1 Point of Interest Search. In this task, we asked participants to

search for a charging station. The only condition was to search for

one with at least 200 Kilowatt hours (kWh). The task included ask-

ing for information about the charging station before choosing one.

There was no condition about which information exactly. Exam-

ples like opening hours, rating, and available spots were given, but

the participant had the option to keep their personal motivations

in mind. The task would end after the participants had chosen a

charging station and started the navigation towards it. The purpose

of this task was to include one of the most important use cases

within the navigation system, the POI search. The task allowed us

to investigate how often and in what ways users reference when

weighing options with POIs.

5.2.2 Multimodal Interaction in Map Navigation. In this task, we

showed participants a map element on a piece of paper. Their goal

was first to identify the element on the map, then obtain informa-

tion about it, and finally start the navigation to it. The task was

free in the interaction of using touch to locate the map to the lake.

Participants could freely use speech or touch to complete the task.

To avoid bias, the map element was consistently introduced as a

neutral "element on the map" without descriptive hints such as

"lake". With the automotive design choice, the map is very minimal

in its information. Most street names and other names of POIs are

not shown. This is unlike the usual GUIs inside of known naviga-

tion applications like Google Maps or Waze Navigation. This task

examined how users combined GUI and VUI interaction, and how

spatial references emerged when participants located and described

map elements.

5.2.3 User Exploration of Graphical User Interface. The last task
was an exploration task to find out information about the navigation

application, focusing on the GUI only. Participants were encouraged

to ask about interface elements, icons, and map components. The

task concluded either after participants felt they had no further

questions or after five minutes had elapsed. The purpose of this task

was to observe spontaneous spatial referencing strategies and to

better understand participants’ motivations for referencing visual

content in a less structured and goal-oriented setting.

5.3 Apparatus

We conducted the study in a standing vehicle, meaning driving-

related interfaces were not accessible during the study. This setup

was chosen as an exploration to capture the full range of user

behaviors in navigation tasks without the cognitive load of driving.

Investigating navigation interactions in a standing vehicle also

reflects a relevant use case, since such tasks are often initiated

while the vehicle is stationary (e.g., before departure or during

breaks). The participants were sitting in the driver’s seat. We did

not use a wake word, but used the haptic microphone button at the

steering wheel for the VUI activation (see Figure 3a).

5.4 Participants

We recruited 21 participants (8 female and 13 male) from BMW

Group to take part in the study. The age range was 23 to 43 years

(𝑀 = 27.9, 𝑆𝐷 = 4.7). Although we did not assess driving expe-

rience, participants’ employment at BMW Group suggests a high

level of familiarity with in-vehicle systems and driving-related con-

texts. For experience with general speech assistant participants,

answers ranged from 1 to 4 (𝑀 = 3.05, 𝑆𝐷 = 1.00, on a scale of 0

to 5, where 0 = unknown and 5 = used regularly). The experience

with the automotive-specific speech assistant ranged from 0 to 3

(𝑀 = 1.38, 𝑆𝐷 = 1.00 on a scale of 0 to 5, where 0 = unknown and

5 = used regularly). The affinity for technology interaction (ATI)

questionnaire was used to measure the participants’ tendency to

engage or avoid interactions with new technologies [8, 16]. The

ATI score ranged from 30 to 45 (𝑀 = 38.80, 𝑆𝐷 = 3.63), with 45

being the maximum score of the scale.

6 Results

The following section will go into the system performance of our

implementation to specify the challenges that occur later. Then dive

deeper into the taxonomy resulting from the user study. In total,

we collected 743 utterances in 63 runs. Out of these, we categorized

116 (15.61%) utterances as spatial references. The 116 spatial refer-

ences were examined through thematic analysis, as described in

Section 6.2.

6.1 Prototype Performance

Within the 116 spatial references collected in the study, we ana-

lyzed system responses based on correctness and tool usage. Each

response was labeled as either a correct or incorrect interpretation
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(a) Study setup from the participant’s view with the microphone

button on the right side of the steering wheel and the display with

the map in the middle.

(b) Alternative perspective showing the on-screen interaction on the

central display.

Figure 3: Study apparatus from two perspectives: partici-

pant’s seating view (a) and display-focused interaction view

(b).

of the visual context, and tool invocation was additionally checked

for whether it was correctly triggered. 72 out of 116 spatial refer-

ences were successfully interpreted. 17 times the responses were

misinterpreted, even though the tool was correctly invoked. In 23

cases (out of 743 utterances), the tool was called unnecessarily, for

example, when the user asked about a color unrelated to the display.

In 73 cases, the tool was not called, although it would have been

appropriate. Most of the cases occurred because a screenshot was

already in the context, leading the model to skip another tool call.

However, this can lead to mismatch as the screen content might

change within one run. In other cases where the tool was not called,

the LLM simply agreed with the user instead of grounding through

the tool. For example, when asked: “But at the top right, that’s the
current time showing on the screen right?”, the model responded:

“You are right, at the top right of the screen you can see the current
time!”. The different counts (e.g., correct responses, incorrect tool
calls, or missed tool opportunities) represent overlapping classi-

fications: even when a response was correct, the grounding tool

might not have been invoked, meaning the visual context was not

updated. Such cases could lead to inconsistencies if the on-screen

Figure 4: Taxonomy of utterances scenario. A spatial ref-

erence can be built using the structure <Target> is refer-

enced to by <Information> in relation to <Origin> to do

<Motive>.

content changed, which is why the sum of these instances exceeds

116.

This analysis led to the following distribution:

• 72 correct vision responses, the system successfully inter-

preted the spatial reference and provided the correct answer.

• 17 incorrect vision responses, the system misinterpreted

the spatial reference, despite invoking the tool.

• 23 incorrect tool calls, cases where the system invoked an

unnecessary tool or selected the wrong one.

• 73 missed tool opportunities, cases where a tool should

have been invoked but was not.

Overall, this breakdown shows that while the system was able to

produce correct responses in more than half of the cases (56.03%),

errors frequently stemmed from unreliable tool invocation. This

highlights that the core challenge lies less in generating a correct

response once the appropriate tool is used, and more in the model’s

decision of when and how to invoke tool calls for spatial reasoning.

6.2 Utterance Taxonomy for Spatial References

To analyze the user behavior, we looked at each user utterance

that was a spatial reference and used thematic analysis to make

sense of the data [4, 30]. We used the tool Atlas.ti to code them. For

this, two researchers independently coded 20% of the study runs of

randomly picked participants. After this, a third researcher joined

the discussion of the codes. We refined the codes and formed a

joint code book. We repeated this process and measured the inter-

rater reliability using Krippendorf’s alpha [15]. After resulting in

Krippendorf’s alpha of 0.84, one researcher coded the rest of the

study runs. The codes provided insights into the varying ways

of spatial references and resulted in a taxonomy. The utterance

scenario taxonomy [33] was created to demonstrate the themes

relevant to building a spatial reference utterance. The themes are

Target, Information, Origin, and Motive. A spatial reference

can, therefore, be built using the following utterance structure:

<Target> is referenced to by <Information> in relation to

<Origin> to do <Motive>
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The taxonomy captures both the linguistic strategies and the

underlying intentions behind participants’ spatial references. By

filling the placeholders with one or multiple types of tokens, every

spatial reference of the study can be mapped fully (see Figure 4),

regardless of variations of phrasing. Table 1 provides an overview

of all categories within each theme, along with example utterances

and frequency of occurrence. To make the understanding easier, we

selected a representative utterance from the study to further explain

each theme in more detail: “I am looking for the name of this large,
long lake at the bottom of the screen.” In the following, the themes

will be described in more detail using the example utterance.

Target illustrates the element or entity being referenced in the

display, in this case, the “lake”. It indicates which visual component

the user’s spatial reference is directed towards. When combined

with the other themes, identifying the Target is crucial for inter-

preting the exact element the user is referring to.

Information describes the way in which the spatial reference

was formulated and what type of detail comes with it. This infor-

mation will then be used to pinpoint the exact element that was

spatially referenced to. In the example, the lake is described by

its size (“large” ), shape (“long” ), and its relative position (“at the
bottom of...” ) A single utterance can combine multiple Informa-

tion categories to describe the visual element in detail. Thus, the

Information theme answers the question of how exactly the user

references visual elements.

The Origin theme specifies the reference point or frame to

which the Target element is described. In other words, it captures

what the user relates the Target to. In the example, the lake’s

position is anchored in relation to the interface (“at the bottom of
the screen.” ). Other possible Origins include the map itself, the

overall interface, specific elements like text, icons, or POIs within

the interface, or even the user’s own perspective. It is noted that

there can also be no relation worded, which results in the category

“implicit interface.” This is due to the tasks revolving around the

interface and, therefore, the assumption that the interface is always

the Origin if not otherwise mentioned.

Motive explains the underlying intent behind the spatial ref-

erence or what the participants want to achieve with it. Here, the

participant seeks POI information (“I’m looking for the name...” ) and
expects an answer in that direction. By capturing the underlying

intention, Motive explains not only what was said, but why it was

said.

6.3 Analyzing Relationships and Frequencies of

Spatial Reference Categories

The first frequency and the relation between the themes Target

and Information is shown in Figure 5a, with element description

and POI being the most prominent. Element description shows con-

nections to all Information categories, with particularly strong

links to absolute references, color, relative points, and size. POIs are

most frequently described using absolute references, relative direc-

tions, and relative points. The use of absolute references, relative

directions, and relative points across various Target categories

with high links underscores the importance of spatial communica-

tion, indicating a frequency of references in relation to other POIs

(a) Frequencies and relationships where Target is referenced by

Information.

(b) Frequencies and relationships where Target is referenced by

Motive.

Figure 5: Frequencies and relationships of the two themes. (a)

Target referenced by Information. (b) Target referenced

by Motive.

or GUI elements. When looking at the Information icon descrip-

tion and textual description, it is noticed that it is almost only in

relation to GUI elements, indicating that other Target categories

are rarely being described by icons or textual descriptions.

As seen in Figure 6, the relations and frequencies of the <Origin>

in relation to <Information> are shown. With absolute in the In-

formation theme being the most frequently used, it draws mostly

to the interface as a whole and the map. The system as a whole is

often mentioned as “on the navigation system” or “on the display”.
For the map, the same is applied, but mentioning the map instead.

“On the map” is by far the most mentioned, with 28 quotations

within 116 spatial references (24.14%). Map and Interface are the

most prominent categories for the Origin theme. The frequency

of the implicit interface in Origin suggests that some spatial refer-

ences are made without explicit relation to another element. This

is possibly due to the shared understanding or the context of the

tasks, which revolve around the interface as assumed Origin.

Figure 5b shows the relations and frequencies of the themes of

Target and Motive. Showing the motivation of participants dur-

ing the study, the most frequent Motives were GUI information,

map information, and POI information. This is correlating with the

tasks, one being the GUI exploration and the other being a task



MUM ’25, December 01–04, 2025, Enna, Italy Huynh et al.

Table 1: All Themes and Categories of Spatial Referencing Utterances with examples from the study or further descriptions

Occurrences

Theme Category Utterance Examples or Descriptions Frequency

T
a
r
g
e
t

Points of Interest Specific locations, landmarks, or destinations of interest, “lake”, “charging station” 38.02%

GUI Element GUI components or other interactive elements, “icon”, “button”, “widget” 38.02%

Element Description Non-specific descriptions about the appearance of visual content without necessarily naming the

element, “area”, “options”

26.44%

Traffic and Navigation Elements related to the navigation context, such as displayed routes or traffic conditions “route”, “red

traffic sections”

1.65%

I
n
f
o
r
m
a
t
i
o
n

Absolute Locations that can be anchored to the overall interface, “in the middle of the screen...”, “on the

display...”

44.63%

Relative Direction Direction described relative to another element; “under...”, “south of...”, “right of...” 26.45%

Relative Point Position described relative to another element; “at the bottom right of...”, “right next...” 23.97%

Icon Description “burger icon”, “arrow” 14.87%

Size “big”, “smaller” 9.92%

Interaction Context References to the participant’s interaction state; “the ones I’m seeing right now...” 9.10%

Color “blue”, “green” 8.26%

Textual Description On- screen text used as identifier; “button with the N”, “icon with 100”, “the one that says SEARCH” 6.61%

Function Functionality associated with the element rather than their appearance, “the one you can search

with”, “ventilation symbol”

4.96%

Shape “elongated”, “circles” 2.48%

Name of GUI Element Explicit name or label of the GUI element, “clock”, “navigation menu” 2.48%

GUI Touch Reference Explicitly tied to involvement of touch interactions, “the point that I marked” 0.83%

O
r
i
g
i
n

Map Reference anchored to the displayed map; “... of the map” 33.06%

Interface The overall display or screen; “...of the display”, “...to the screen” 27.27%

Points of Interest Locations, landmarks or names of cities; “lake” 17.36%

Implicit Interface No explicit mentioned Origin, but the implicit interface as assumption 15.70%

Text On-screen text read and cited diractly; “button that says SEARCH” 12.40%

Icon “compass icon”, “mountain icon” 5.79%

1st Person Perspective Participant’s own viewpoint as anchor, “left of me...” 2.48%

M
o
t
i
v
e

GUI Information Function or meaning of interface elements; “What does this button do...” 46.29%

POI Information Details about a POI; “What’s the name of this lake...” 26.45%

Map Information Requests aimed at interpreting map content; “What’s this blue lake on the map...” 16.53%

Relocation of Map Instructions to move or change the map in some form; “Show me on the map” 11.58%

Navigation Instructions to start a navigation or modify a route; “I want to get to xy”, “Select the left route for me” 4.13%

Correction Revising or clarifying a prior utterance; “No, I meant...”, “I was talking about...” 3.31%

aimed at asking for a POI. Results reveal a strong interconnected-

ness between GUI elements and their associated information, as

well as POIs and their related context. There is a strong connection

between a GUI element and GUI information. Example utterances

were “What’s that icon upper right, next to the clock?” or “What
can I do with the arrow next to search?”. This indicates that asking
about a GUI element often also aims to obtain information about its

function or meaning. Similarly, POI references are strongly linked

to inquiries about POI details such as names, ratings, or other con-

textual information, as well as to navigation and map manipulation.

These connections of the GUI element and POI show that most of

them are referenced with the motivation of staying in the same

topic and to be maintaining a topical continuity. Map information

is shown to be the most flexible, with a connection to all Target

categories. Anything map-related is included in map information,

like “What is currently shown on the right side of the map?” or “What
do the dark blue areas on the map mean?”.

7 Discussion

The following section discusses the implications of our findings

for the design and reliability of spatial referencing. We reflect on

both technical implications and user interaction patterns that shape

spatial referencing in automotive contexts.

7.1 Reliability of MLLMs for Spatial Grounding

Our evaluation of the prototype highlights both the potential and

the current limitations of MLLMs, specifically using the GPT-4o

model, when used for spatial grounding in automotive interfaces.

While rule-based or existing systems with explicit access to the

GUI state information could achieve higher technical reliability, our

goal was not to evaluate system performance but to investigate

user interaction patterns enabled by emerging MLLM capabilities.

MLLMs were chosen because they can process both textual and

visual inputs, allowing participants to use natural, unconstrained

spatial references instead of predefined command structures, which

might not be understood in a purely deterministic implementation.
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Figure 6: Frequencies and relationships of the two themes

where Origin is referenced by Information.

Out of 116 spatial references, 72 responses (62.07%) were classified

as correct, showing that the system is able to successfully interpret

visual context and link user utterances to GUI or map elements

in more than half of the cases. However, the remaining instances

reveal several reliability issues that must be considered. A central

challenge lies in the consistency of tool invocation. The model

occasionally invoked the spatial grounding tool when it was not

needed (23 instances) or failed to do so when appropriate (73 in-

stances). Almost all these omissions occurred because a screenshot

was already present in the context. While this mostly did not lead to

incorrect responses in our relatively static scenarios, the proportion

of correct responses could likely have been higher if the model had

consistently invoked the tool for each spatial reference. In other

cases, the model simply agreed with the user instead of grounding

the response, as in the example: “But at the top right, that’s the cur-
rent time showing on the screen right?” - to which the model replied,

“You are right, at the top right of the screen you can see the current
time!”. This behavior undermines reliability, since display content

may change, and the lack of grounding risks inconsistencies.

Such issues illustrate the current technical limitations of MLLMs

for spatial reasoning. To increase reliability, future approaches

should focus on three directions: (1) improving the detection of

when spatial grounding is needed to reduce missed and unnecessary

tool calls, (2) improve models by fine-tuning with automotive GUI-

specific data, and (3) providing transparency to the user, for example

by highlighting the element that the system grounded its response

on, so that errors can bemade transparent to the user to be corrected.

Beyond improving technical reliability, these findings also provide

guidance for the design of spatial referencing. Understanding where

spatial reasoning may fail helps designers anticipate and work on

how to make system reasoning more transparent.

7.2 Effects of Task Context on Spatial

References

The proposed taxonomy demonstrates that spatial references are

structured through four key themes: Target, Information, Origin,

and Motive. Results show that 15.61% (116 out of 743) utterances

contained spatial references during the study. Targets most fre-

quently include Points of Interest (POIs) and GUI elements, with

information conveyed through absolute and relative positioning.

Maps and interfaces emerged as primary reference Origins. Mo-

tives centered on seeking GUI information, POI details, and map

understanding. It is noteworthy that the nature of the tasks involved

a heavy focus on the display. The two tasks in question are one

with the task of asking about a specific POI displayed on the screen,

and the other of exploring inside the GUI. Resulting in 20.07% (55

out of 274) spatial references in the second task and 20.63% (59

out of 286) spatial references during the third task. This demon-

strates a task-dependent pattern in spatial reference usage, which

correlates with the most frequent motives: GUI information and

POI information. The first task, which was about finding a suitable

charging station, only showed a quote of 1.09%, suggesting that

participants did not require the use of references to the screen when

searching for charging stations. This finding reveals a distinction

between task types. POI search that can be accomplished through

voice commands alone versus tasks that require visual exploration

and reference to on-screen elements. Participants seemed to be

satisfied with only the voiced information in combination with the

textual information in the context of POI search. The only scenarios

showed the need for “show me the charging station on the map,” so
taking actions inside the map and relocating it.

7.3 User Strategies for Spatial Referencing and

Topical Continuity

Insights from the results reveal the diversity of referencing strate-

gies employed by participants. For instance, GUI elements were

often referenced with the motive of understanding their function,

as evident from utterances like “What’s that icon upper right, next

to the clock?” or “What can I do with the arrow next to search?.”

On the other hand, POIs were frequently linked to navigation and

map interactions. The strong connection between Targets and

Motives suggests that users maintain topical continuity through

spatial references (see Figure 5b). For example, when referencing a

GUI element, the motive was often to seek information about that

element’s functionality or purpose within the interface. Similarly,

POI references were commonly associated with motives related

to navigation, map manipulation, or gathering details about the

specific POI. When tasked with referencing icons, participants of-

ten used other GUI elements, like other icons inside the GUI, as

a reference. There seems to be a mental connection between the

type that is referenced and the object used as a relation. When

it comes to referencing strategies, the map, the interface, or the

implicit interface as a whole was frequently used as the Origin

to make spatial references, see Figure 6. This tendency suggests

that participants preferred to refer to the interface holistically with

directional cues like “left” or “right” instead of taking the additional

mental step of describing the specific element in further detail. For

instance, participants would say “on the map” or “on the display”
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rather than providing a more granular description of the Target

element’s location or context within the interface. Our analysis also

reveals users mostly used absolute positioning (44.63%) and relative

directional (26.45%) or relative point (23.97%) references. This is

often used in combination with the holistic approach mentioned

before. The use of absolute positioning by phrases like “in the mid-

dle of the screen” or “on the display” suggests that users tend to

reference within the overall spatial framework of the interface. Rel-

ative references were the second most common strategy, showing

how users create relationships between elements to disambiguate

their spatial references. In general, users opt for broader reference

frames that require less cognitive effort to formulate, especially in

context with VUIs, where there feels like there is less time to think.

7.4 From Taxonomy to Insights from Spatial

Referencing Patterns

The taxonomy provides a structured way of analyzing how users

formulate spatial references in in-car interactions. By decompos-

ing utterances into Target, Information, Origin, and Motive, it

becomes possible to identify recurring strategies and contextual de-

pendencies for future design considerations. Further analysis with

relationships and frequencies of spatial reference categories also

implies the most associated themes. Beyond its descriptive value,

the taxonomy also offers implications for in-car VUIs. First, the

strong alignment between Target and Motive categories suggests

that systems can anticipate likely user intents (e.g., GUI elements

typically prompt questions about functionality, POIs about names

or details). Second, the dominance of absolute and relative position-

ing indicates that systems should be optimized to interpret broader

references such as “on the left” or “in the middle” rather than inter-

preting precise and descriptive formulations. Third, the frequent

reliance on implicit frames of reference highlights the importance of

treating the display or map as a default origin, reducing the need for

users to explicitly specify context. In addition to informing design,

the taxonomy can also support model performance. Its structured

categories can provide a blueprint for constructing higher-quality

datasets that better capture how users naturally reference in au-

tomotive contexts. While these implications are rooted in in-car

interactions, the underlying mechanisms of spatial references are

not domain-specific. Researchers developing spatial referencing

for areas like robotics or augmented reality could adopt this tax-

onomy to train or evaluate models that interpret human spatial

language under dynamic visual conditions. For example, synthetic

utterances could be generated following the taxonomy’s structure,

or human-annotated datasets could be aligned with its categories

to create utterance–response pairs. Such datasets would enable

fine-tuning of MLLMs on automotive-specific GUIs and map-based

applications.

7.5 Cognitive Demands in Voice-Based

Interactions

During the study, participants had the opportunity to explore the

interface. Even under such conditions, participants predominantly

employed cognitively efficient strategies such as absolute references

(e.g., “in the middle of the screen”) or relative references (e.g., “to the

right of the burger icon”). This suggests a preference for low-effort

expressions in voice-based spatial referencing. Speech interaction

itself can be seen as a constraint, as long breaks will cancel the

input time window. Time pressure after pressing the push-to-talk

button and the need for input likely reinforced the preference for

short, absolute, or relative expressions over more elaborate descrip-

tions of elements. Another factor may be participants’ limited prior

experience with automotive-specific voice assistants (𝑀 = 3.05)

compared to automotive-specific assistants (𝑀 = 1.38). This could

have reduced participants’ confidence in making more complex

and automotive-specific references. Although participants were

introduced through an example task, they had little time during

the study setup to develop strategies before starting the study. This

can make it challenging to adapt to the learning curve and create

a barrier of not knowing what is possible. As users become more

comfortable with the new paradigm over time, they can adapt and

interact with the feature more naturally. These findings show how

cognitive constraints, such as time pressure or limited feedback,

shape the linguistic strategies users employ when communicating

spatial references. These insights can inform the design of voice-

and vision-based interfaces beyond automotive use, where similar

temporal and attentional demands exist.

7.6 Limitations

While enabling spatial referencing for LLMs presents opportunities

for driver-vehicle interaction, several limitations must be acknowl-

edged. The limitations of this work are resolved around model

capabilities and the restricted scope of our current implementation.

First, the current output generation of the model in use (GPT-

4o) shows inconsistencies, especially in spatial reasoning. Even

when provided with a contextual image input, models are heavily

reliant on the textual information, either taking the structure of

the given object format in the data or plain text to generate output

[41]. An example is “the route in the middle”, where the reference

is to a displayed route on the display in contrast to the textual

route data object. Consequently, our study cannot conclude that the

LLM genuinely grounds spatial references in visual content alone.

The results reflect performance in a hybrid setup where textual

cues remain dominant. Although our prompts already included

examples and counterexamples of how spatial references should

be resolved, the model still showed unreliable behavior in deciding

when to invoke the tool. One contributing factor is that we built on

top of an existing LLM backend that already provides a large set

of tools. This suggests that limitations go beyond simple prompt

engineering and relate to the model’s underlying mechanism for

tool invocation [35, 36]. More prompting strategies or fine-tuning,

improved orchestration across available tools, or fine-tuning with

domain-specific data to reduce such errors could reduce such errors.

Additionally, the integration was limited to the navigation appli-

cation. Integrations of the touch modality and all other components

that can be seen inside and outside of the vehicle (e.g., secondary

displays, haptic buttons) were not included. The implementation is

restricted to the display of the navigation system and what is shown

there. The minimalistic design of the tested navigation GUI might

not give enough content to reference spatially. By restricting spatial
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referencing to the central display and within the navigation appli-

cation, the system misses opportunities for more comprehensive

and intuitive interactions across the entire vehicle interface.

7.7 Future Work

We conducted the study in a stationary vehicle providing a con-

trolled environment to observe user behaviors. Future work should

extend to dynamic driving conditions, where divided attention and

changing map content create additional challenges. Spatial refer-

ences such as “on the left” may quickly shift or disappear as the map

updates. Here, transparency (e.g., a VUI-specific GUI that highlights

referenced elements) could reduce cognitive load and allow users

to verify or correct grounding, thus supporting trust in the system.

While our prototype focused on spatial references within the

graphical interface, future research could explore how spatial lan-

guage and multimodal input, such as gesture or gaze, can integrate

across modalities and environmental contexts. This consideration

becomes increasingly important as users may not clearly distin-

guish the system’s perceptual boundaries. If their mental model

assumes that the system “sees” the same visual layer as they do,

spatial references may naturally extend beyond the in-car central

information display.

Second, improvements in spatial reasoning are expected as re-

search in MLLMs progresses. Fine-tuning with domain-specific GUI

data could reduce hallucinations and improve grounding reliabil-

ity beyond what prompting alone can achieve [25]. Recent work

shows that models trained on image–text data benefit more from

few-shot learning [6]. Interleaved image-text data also describes

relationships within an image. Instead of image-text pairs like ‘a

giraffe,” captions for interleaved image-text data would be a giraffe

standing behind a metal fence. The giraffe appears to be looking

towards the ground.” Targeted pre-training and fine-tuning with

automotive-specific examples could therefore strengthen reliability

in handling spatial references.

Finally, spatial language is culturally and linguistically diverse.

Even within English, dialects differ in how spatial relations are

expressed [10]. Expanding to other languages and cultural contexts

would provide valuable insights for designing adaptive systems

that accommodate such variations.

8 Conclusion

In this work, we examined the integration of spatial referencing for

LLM-based VUIs for automotive navigation. Through an in-vehicle

study, we analyzed user interactions with visual content on naviga-

tion screens, highlighting how users refer to and describe on-screen

elements with a taxonomy. The creation of a taxonomy for spatial

references provides insights into the different ways users interact

with visual information, with a preference for absolute and relative

spatial references. Most users frequently rely on absolute and rela-

tive descriptions, often drawing on salient traits or nearby elements

as anchors for their reference. While the study demonstrates an

implementation of spatial referencing in automotive contexts, it

also shows several challenges. Future research directions could fo-

cus on improving spatial reasoning capabilities, exploring cultural

and linguistic differences in spatial descriptions, and investigating

the challenges of spatial referencing in dynamic driving scenar-

ios. As vehicles evolve towards higher levels of automation, the

role of in-vehicle interfaces may shift, potentially increasing the

importance of intuitive spatial referencing. Spatial referencing can

play a central role by allowing users to seamlessly connect spoken

language with visual and environmental context. The integration of

spatial referencing in automotive interfaces provides the potential

to make in-vehicle VUI and GUI interaction truly hands-free, more

natural, and more human-like.
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