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Abstract

Mixed Reality (MR) interfaces increasingly rely on gaze for inter-
action, yet distinguishing visual attention from intentional action
remains difficult, leading to the Midas Touch problem. Existing
solutions require explicit confirmations, while brain-computer in-
terfaces may provide an implicit marker of intention using Stimulus-
Preceding Negativity (SPN). We investigated how Intention (Select
vs. Observe) and Feedback (With vs. Without) modulate SPN during
gaze-based MR interactions. During realistic selection tasks, we
acquired EEG and eye-tracking data from 28 participants. SPN was
robustly elicited and sensitive to both factors: observation with-
out feedback produced the strongest amplitudes, while intention
to select and expectation of feedback reduced activity, suggesting
SPN reflects anticipatory uncertainty rather than motor prepara-
tion. Complementary decoding with deep learning models achieved
reliable person-dependent classification of user intention, with accu-
racies ranging from 75% to 97% across participants. These findings
identify SPN as an implicit marker for building intention-aware
MR interfaces that mitigate the Midas Touch.

CCS Concepts

« Human-centered computing — Human computer interac-
tion (HCI).
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1 Introduction

Mixed reality (MR) interfaces are advancing usability and acces-
sibility, with devices like Apple’s Vision Pro offering gaze and
hand-based interactions to support more natural control in spatial
computing environments [48, 67, 83]. Despite these advances, reli-
ably distinguishing between visual attention and intentional inter-
action remains a persistent usability challenge, commonly referred
to as the Midas Touch problem [43]. This issue arises when systems
misinterpret mere looking as deliberate action, often leading to
unintended commands [9]. Because gaze is inherently continuous
and exploratory, treating it as direct input can compromise the flu-
idity and reliability of gaze-based control. Dwell-based techniques,
where gaze fixations are interpreted as selections after a fixed dura-
tion [80], are especially prone to false positives [74, 128], leading to
unintentional selections that disrupt user experience [112]. Thus,
there is a lack of implicit, intention-sensitive mechanisms that can
reliably disambiguate whether a user intends to interact with a gaze
target or is simply observing.

Previous work has attempted to mitigate gaze ambiguity by intro-
ducing external confirmation signals, such as hand gestures [55, 73],
speech commands [92, 121], or blink-based triggers [66]. More
recently, brain-computer interface (BCI) approaches have shown
promise in inferring cognitive states in MR [77]. Notably, Reddy
et al. [91] demonstrated that the Stimulus-Preceding Negativity
(SPN), a slow cortical potential that builds up before anticipated
events [114], can serve as an electrophysiological (EEG) correlate
of intent in controlled Virtual Reality (VR) environments. While
this work validated SPN for target selection tasks, questions re-
main about how SPN responds to key interactive variables, such
as user intention and system feedback, across more ecologically
valid gaze-based tasks. Understanding how intention and feedback
jointly shape anticipatory neural responses would support the de-
sign of multimodal interfaces that can distinguish purposeful gaze
from casual observation. This knowledge could enable hands-free,
confirmation-free interactions that adapt to users’ internal states
in real time.

In this work, we systematically investigate how user intention
(Select vs. Observe) and feedback (Feedback vs. No Feedback) jointly
influence anticipatory EEG activity during gaze-based MR interac-
tions. This dual manipulation is important because previous stud-
ies conflated intention with system response, making it unclear
whether SPN reflects internal goals or external feedback expecta-
tions. Unlike previous studies that focused on narrow selection
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paradigms [52, 106], we embed our study within diverse realistic
scenarios, including app selection, UI controls, and media play-
back in MR. Using EEG, we test whether SPN can differentiate
intention types and whether it reflects internal anticipation rather
than merely feedback presence. Moreover, we assess whether such
EEG signatures can be classified using machine learning models
for practical MR applications.

Our results demonstrate that SPN amplitude was shaped by both
intention and feedback, with observation without feedback eliciting
the strongest anticipatory activity. Overall, the intention to act and
the expectation of feedback reduced SPN amplitude, suggesting that
in MR contexts SPN reflects anticipatory uncertainty rather than
motor preparation. This establishes SPN as a consistent anticipa-
tory marker during realistic MR tasks and refines its interpretation
beyond motor intent.

We also explored whether intention can be decoded directly from
EEG signals using deep learning models in a person-dependent
setup. Classification accuracies reached up to 97%, with EEGIn-
ceptionERP performing best, showing that anticipatory brain ac-
tivity contains discriminative information about user goals. This
demonstrates the feasibility of intention decoding in MR, while also
pointing toward the need for personalized calibration.

Taken together, these findings contribute in four ways: (1) they
confirm that SPN is robustly elicited across ecologically valid MR
interactions, (2) they show that SPN indexes anticipatory uncer-
tainty rather than motor preparation, shaped by the joint influence
of intention and feedback, (3) they demonstrate that intention can
be decoded from anticipatory EEG using deep learning in a person-
dependent setup, and (4) they outline implications for adaptive
MR design, where SPN patterns could help reduce false activations
(Midas Touch), guide feedback timing, and be combined with other
modalities (e.g., pupil size, electrodermal activity (EDA)) to build
intention-aware and uncertainty-sensitive interfaces.

2 Related Work

In the following, we first review gaze-based interaction techniques
in MR and their associated usability challenges. We then examine
prior work on disambiguating user intent in gaze-driven interfaces,
including both explicit and implicit approaches. Finally, we discuss
EEG correlates of intention, focusing on the SPN component as a
candidate signal for adaptive interaction.

2.1 Gaze-Based Interaction in Mixed Reality

Gaze is valued for its intuitive, natural, and hands-free characteris-
tics. It enables users to interact without holding physical controllers,
reducing physical load and aligning interaction closely with atten-
tion. This makes it particularly well-suited for MR scenarios where
mobility, context awareness, and low-effort input are common re-
quirements.

Thus, it emerged as a prominent input modality in MR. A wide
range of gaze-based techniques have been proposed, with dwell-
based selection being the most commonly used. In this method, a
user selects a target by fixating on it for a predefined duration, an
approach introduced by Jacob [43]. Other systems, such as that of
Starker and Bolt [107], used dwell not for selection but as a signal of
user interest, triggering additional information after a fixed delay.
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More recent gaze-based methods include raycasting [12, 32, 33],
where gaze or head orientation [37] guides a virtual pointer, and cur-
sor, based overlays, which provide visual feedback on gaze position
and potential targets.

Despite its advantages, gaze-based interaction still faces persis-
tent usability issues. Chief among them is the Midas Touch problem,
where systems struggle to distinguish between passive viewing and
intentional action, often triggering unintended commands [43]. An-
other significant challenge is limited gaze precision, particularly
in the periphery, where spatial targeting is compromised by the
eye’s lower visual acuity and inaccuracies in head-mounted eye
tracking [54, 85]. This makes fine-grained selection difficult in clut-
tered MR environments. A third issue is calibration drift, where
eye-tracking accuracy degrades over time due to slippage, lighting
changes, or user movement, often requiring frequent recalibration
that interrupts the user experience [76, 85]. In addition, factors such
as occlusions, eyewear, or individual physiology can further reduce
tracking robustness [85]. Together, these challenges highlight the
need for more robust and selection-sensitive mechanisms that can
enhance the reliability and usability of gaze-based interaction in
MR.

2.2 Disambiguating Intent in Gaze-Driven
Interfaces

A key step toward more robust gaze-based interfaces is the ability
to disambiguate between when a user is simply looking at content
and when they intend to act on it. To address this, many systems
have introduced explicit confirmation techniques that combine gaze
with auxiliary modalities. Examples include voluntary or half-eye
blinks [57, 66], speech commands [121], head [82, 83] and body
movements [50]. Here, hand gestures, such as the pinch gesture
[83], have proven particularly effective, and additional gaze-hand
alignment techniques, such as Gaze & Handray [33] or Gaze &
Finger [118], confirm target selection by aligning hand rays or
fingers with gaze [39, 72].

While these multimodal approaches mitigate the “Midas touch”
problem, they also introduce drawbacks. Gestural interfaces often
cause physical fatigue, making them difficult to sustain during long
sessions [73, 79]. Gaze interactions themselves may lead to eye
fatigue or strain [38], although studies suggest less strain when
gaze is limited to pointing rather than being used for both pointing
and selection [84, 118, 130]. Similarly, blink- or vergence-based
techniques can be uncomfortable and demand additional cognitive
effort [16, 49].

To overcome these limitations, researchers have begun to inves-
tigate implicit, intent-sensitive signals. Sharma et al. [103] demon-
strated that combining EEG with eye tracking enables classification
of target versus non-target fixations during free visual search in
realistic, cluttered environments. Their multimodal model achieved
over 80% cross-user accuracy, substantially outperforming earlier
ERP-based methods. Their findings show that intent can be dis-
ambiguated not only through external confirmation gestures, but
also through implicit neural and ocular markers of goal-directed
fixations. This neuro-adaptive approach highlights a promising
path forward, even though its reliance on EEG still limits its ev-
eryday practicality in MR. Along similar lines, multimodal fusion
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of eye tracking with EEG has been shown to discriminate naviga-
tional from informational search intentions [78], while EEG phase
synchrony features further improved recognition of these implicit
states [46]. Extending to VR, time-domain EEG and electromyo-
graphic (EMG) signals can reveal idle versus pre-movement states,
enabling zero-lag interaction [75]. Together, these works point to-
ward intent-sensitive interfaces that anticipate rather than react to
user actions.

2.3 EEG Correlates of Intention

Intention is broadly defined as a conscious representation of an
action that includes a goal to be achieved, serving as a mental
prefiguration of future behavior [25]. It is often described as a per-
ception without causal power, meaning it reflects the planning or
anticipation of action rather than its direct execution [91]. Here,
intention is tied to the sense of agency: when the outcome of an
action matches one’s internal intention, it reinforces the subjective
experience of authorship and control over that action [116]. In hu-
man-computer interaction (HCI), intention is necessary to enable
systems to interpret user goals [42]. It is typically operationalized
as a user’s internal commitment to perform a specific action, such
as selecting a Ul element, issuing a command, or interacting with
content.

Here, electrophysiological signals offer a promising pathway
to implicit intent detection [91, 131]. Within EEG research, three
components have been most consistently associated with intention:
the Readiness Potential (RP), the Lateralized Readiness Potential
(LRP), and the Stimulus-Preceding Negativity (SPN).

The RP is a slow negative fluctuation emerging up to two seconds
before voluntary movement [24, 61]. It originates in the supple-
mentary motor areas and becomes strongest contralateral to the
acting hand shortly before movement onset [104]. Because RP reli-
ably precedes both the execution of movement and the subjective
awareness of intention, it has been central to debates on free will
[100]. Despite these controversies, RP is widely accepted as a ro-
bust signal of subconscious motor preparation [104], though recent
evidence suggests it may reflect more general decision-related or
anticipatory processes rather than pure motor planning [3]. The
LRP refines this further by indexing effector-specific preparation
over motor cortices [109], reflecting whether the left or right hand
will act. Both RP and LRP, however, are bound to motor execution
and thus less suited to interaction paradigms where intentions may
not culminate in movement.

The SPN captures a fundamentally different aspect of anticipa-
tion [8]. It is a slow negative potential that builds up in the interval
before an expected, task-relevant stimulus [22]. Critically, unlike RP
and LRP, SPN is a non-motor anticipatory component: it emerges in
paradigms without movement, with participants simply awaiting
informative stimuli [115]. Converging evidence establishes that
SPN specifically indexes anticipatory uncertainty rather than gen-
eral expectancy. Catena et al. [10] demonstrated that SPN amplitude
is larger for probabilistically unpredictable outcomes than for pre-
dictable ones, with source localization implicating prefrontal areas
related to uncertainty processing. Tanovic and Joormann [110]
showed that an uncertain threat (50% shock probability) elicits sig-
nificantly stronger SPN than a certain threat (100%) or safety (0%),
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establishing SPN as specifically sensitive to uncertainty beyond
valence or arousal. Walentowska et al. [119] further demonstrated
that relevance and uncertainty jointly modulate SPN, with maxi-
mal amplitudes when outcomes are both uncertain and personally
significant.

These empirical findings align with contemporary neurocogni-
tive theories based on predictive coding and the free energy princi-
ple [18]. Under these frameworks, the brain continuously generates
predictions about sensory input and minimizes prediction errors by
updating internal generative models [31]. Friston and Kiebel [31]
proposed that attention involves inferring the precision (inverse un-
certainty) of predictions, i.e.,allocating processing resources where
predictions are most uncertain to prepare for potential prediction
errors. SPN can be understood as an electrophysiological signa-
ture of this anticipatory uncertainty monitoring: when upcoming
events cannot be reliably predicted, the brain allocates attentional
resources to track prediction error and uncertainty [10, 30], mani-
festing as increased SPN amplitude. Conversely, when outcomes
are predictable, either because contingencies are well-learned or
because intentions clarify likely consequences, anticipatory uncer-
tainty reduces, and SPN amplitude attenuates. Classically, SPN has
been observed in tasks where participants anticipate motivationally
salient events, such as gambling outcomes [53], performance feed-
back [89], or the arrival of an informative cue [8]. In these settings,
SPN reflects the allocation of cognitive resources toward upcoming
information, scaling with the degree of uncertainty about what will
follow [69].

This makes SPN particularly relevant for MR interfaces, where
the challenge is distinguishing observation from intention under
uncertainty. When users gaze at interface elements, their inter-
nal mental model determines whether they can predict what will
follow: intentional selection establishes clear action-outcome pre-
dictions, reducing anticipatory uncertainty; passive observation,
especially without feedback, creates maximal uncertainty about
system response, heightening anticipatory monitoring demands.
While prior work in VR shows SPN can separate intent-to-select
from passive viewing [91], it remains unclear how SPN behaves
in realistic MR tasks where both intention and feedback jointly
shape anticipatory uncertainty. Our study addresses this gap by
testing SPN in an Intent x Feedback design within ecologically
valid MR scenarios, advancing its use as a marker for adaptive,
intent-sensitive interaction.

3 Hypotheses

Building on prior work establishing SPN as a marker of anticipa-
tory processing [8, 91] and evidence linking SPN to uncertainty
monitoring [10, 110, 119], we test the following hypotheses:

e H1: SPN will be reliably elicited during gaze-based MR inter-
actions across all experimental conditions, extending prior
findings from simplified laboratory tasks to ecologically valid
interface contexts.

e H2: SPN amplitude will be greater (more negative) in Ob-
serve than Select conditions. This prediction follows from
the uncertainty account of SPN [10, 30]: passive observation
without established action-outcome contingencies creates
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greater uncertainty about what will follow, triggering en-
hanced anticipatory monitoring. In contrast, intentional se-
lection establishes clear predictions about system response,
reducing anticipatory uncertainty and thus SPN amplitude.

e H3: Intention and feedback will interact to modulate SPN
amplitude. In Select trials, clear action intentions reduce
baseline uncertainty, so feedback availability should have
minimal additional impact on SPN. In Observe trials, baseline
uncertainty is higher, so feedback presence should reduce
SPN by resolving uncertainty about the system’s response.
This interaction would demonstrate that SPN tracks the de-
gree of anticipatory uncertainty shaped by both internal
goals and external information [30, 31].

While these hypotheses address theoretical accounts of anticipa-
tion in MR, we also aim to examine the practical feasibility of de-
coding user intention directly from neural signals. Recent advances
in deep learning applied to EEG suggest that classification-based
approaches can move beyond theory-driven markers and support
adaptive systems in practice [64, 65, 98]. Thus, we formulate :

RQ: To what extent can intention (SELECT vs. OBSERVE) be de-
coded from EEG signals using deep learning models?

4 User Study

Previous research has linked the SPN to anticipatory processing in
feedback and outcome tasks [8, 53, 89] and, more recently, to in-
tent detection in simplified VR settings [91]. Yet, it remains unclear
how SPN behaves in realistic MR tasks, where users alternate be-
tween observation and selection, i.e. INTENT and where FEEDBACK
expectations shape anticipation.

4.1 Study Design

We employed a within-participants experimental design. The in-
dependent variables were FEEDBACK (two levels: Feedback / No
Feedback) and INTENT (two levels: Observe / Select). This yielded
a 2 X 2 factorial structure. We add the Feedback conditions in the
intent-to-observe scenario to address a key confounding factor:
whether the SPN is tied to the user’s anticipation of feedback or
their intention to select [91]. To avoid learning effects, the order
of conditions was counterbalanced across participants using a bal-
anced Latin Williams square design with four levels [120].

For ecological validity, tasks were performed across three every-
day MR scenarios where digital interface elements were overlaid
onto the real-world environment viewed through the MR head-
set: (1) observing or selecting an app icon in a digitally rendered
launcher interface, (2) observing or selecting an icon embedded
within a virtual textual document, and (3) observing or selecting
a control icon to pause/play/stop a digitally presented video. All
Ul elements, feedback signals, and media content were computer-
generated and spatially anchored in the participant’s real-world
visual field, while the background environment remained their
actual physical surroundings. In the feedback conditions, partic-
ipants received visual confirmation following the observation or
selection action (e.g., highlighting the icon or app), whereas in the
no-feedback conditions, no such confirmation was presented.
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4.2 Independent Variables

We employed a within-participants experimental design with two
independent variables: Intention and Feedback. Together, these
factors produced four conditions: Select—With Feedback, Select—Without
Feedback, Observe—With Feedback, and Observe—Without Feedback.

4.2.1 Intention. The firstindependent variable manipulated whether
participants actively interacted with the interface or passively mon-
itored it.

In the Select condition, participants were instructed to fixate on a
target icon to select it, triggering a specific Ul action (e.g., launching
an app, modifying a document, controlling video playback). In the
Observe condition, participants fixated on the icon to observe it,
with explicit instruction that no action would be triggered. Both
conditions required 750 ms fixation.

Although oculomotor behavior was identical, these instructions
induced different internal goal states. This manipulation builds on
foundational work by Posner [87], who established that symbolic
cues can shift covert attention and produce measurable cognitive ef-
fects despite participants maintaining central fixation, thus demon-
strating that internal attentional states can be dissociated from
overt behavior. Subsequent research has consistently shown that
task instructions create distinct anticipatory brain states despite
matched behavioral outputs: endogenous attention cuing produces
different neural signatures when participants are cued to “attend
left” versus “attend right” despite maintaining central fixation [47];
task-set instructions (“respond to color” vs. “respond to shape”)
elicit preparatory differences before stimuli appear [96]; and ob-
serving actions with intent to imitate versus passively watching
yields distinct neural patterns despite identical visual input [41].
Our manipulation extends this principle to gaze-based MR interac-
tion, where gaze can function as an instrumental command (Select)
or passive monitoring (Observe).

We reinforced this distinction through: (1) explicit trial-initial
instructions stating the goal (“Fixate to select [icon]” vs. “Fixate to
observe [icon]”), (2) ecological scenario embedding (app launcher,
document editor, media player) where this distinction is naturalistic,
and (3) training with neutral shapes where participants directly
experienced differential consequences (action vs. no action), estab-
lishing contingency learning.

The 750 ms dwell threshold was based on Reddy et al. [91],
who demonstrated successful SPN-based intention detection at this
timing in VR. This duration falls within the typical 500 - 1000 ms
range for SPN elicitation [106].

4.2.2 Feedback. The second independent variable manipulated
whether visual confirmation of fixation was provided. In the With
Feedback condition, a 500 ms pop-up feedback signal was displayed
after fixation (in Observe trials) or immediately before the UI ac-
tion (in Select trials). The 500ms duration was chosen to ensure
reliable perception and neural activation [51] while maintaining
interaction responsiveness at the threshold where longer delays
impair user behavior [63]. This timing optimizes feedback salience
for our MR environment without compromising ecological validity.
In the Without Feedback condition, no feedback was shown, and
the trial progressed directly to the next phase.
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Figure 1: Experimental scenarios illustrated with MR interfaces screenshots. Columns represent the four tasks (Training,
Document, App Launcher, Video), and rows show the interface states Before Selection (top) and After Selection (bottom). During
training, participants interacted with neutral geometric shapes, while in the main scenarios they performed gaze-based
interactions in everyday MR contexts such as editing text, launching applications, browsing files, and controlling video
playback. Feedback was presented immediately after gaze-based selections.

4.3 Task

Participants performed a gaze-based interaction task in MR, where
virtual Ul elements were superimposed on their physical environ-
ment through the headset. At the beginning of each trial, an instruc-
tion screen indicated whether they should Select or Observe the
upcoming icon. To increase ecological validity, trials were embed-
ded in three everyday usage scenarios: (1) an application launcher,
(2) a text document, and (3) a video player, see Figure 1. The real-
world surroundings served as the visual backdrop, while all interac-
tive components, including application icons, document interfaces,
and video controls, were digitally rendered and spatially registered
within the participant’s field of view.

The experimental structure fully crossed INTENT (Observe / Se-
lect) and FEEDBACK (Feedback / No Feedback) with the three scenar-
ios. Each participant therefore completed all four conditions in each
scenario, resulting in twelve blocks in total. Before the main experi-
ment, participants performed a short training phase to practice each
condition. The order of experimental blocks was counterbalanced
across participants to minimize learning and carry-over effects.

4.3.1 Scenarios. Each trial was embedded in a scenario that pro-
vided contextually meaningful icons. In the App scene, participants
viewed a grid of application icons resembling a mobile home screen,
including Files, Music, Settings, Safari, and TV.In the Document scene,
they saw a text-editing interface with the title “Hello World!” dis-
played in the document area, accompanied by toolbar icons such as
Undo, Redo, Save, Export, and Close. In the Video scene, they viewed
a video player showing a clip of planet Earth, with playback con-
trols including Rewind, Stop, Pause, Play, and Fast Forward. We
deliberately chose a neutral Earth video to avoid eliciting affective
responses, as the SPN has been shown to be sensitive to affective
state [86].

4.3.2  Select Condition. In the Select condition, participants were
instructed to actively interact with the interface by triggering a
gaze-click. After the fixation cross, an icon from the current scenario
appeared on the screen. Participants fixated on the icon for 750 ms,
after which the system registered the gaze as a selection. Depending
on the feedback condition, either a 500 ms pop-up feedback was
shown before the system after the action (with Feedback), or the
action was executed immediately (no Feedback).

The specific outcome of a selection depended on the active sce-
nario. For example, in the App scene, selecting the Safariicon opened
the Safari browser window. In the Document scene, selecting the
Undo icon removed the displayed text “Hello World!” from the doc-
ument. In the Video scene, selecting the Play icon initiated playback
of the Earth video. These contextualized responses ensured that
each selection had a clear and meaningful consequence.

4.3.3 Observe Condition. In the Observe condition, participants
were instructed to passively monitor the display without initiating
an action. After the fixation cross, an icon from the current scenario
appeared, and participants fixated on it for the same 750 ms dwell
time. In the With Feedback trials, a 500-ms pop-up feedback was
shown after fixation, whereas in the Without Feedback trials, no
feedback was provided. No application, document, or video was
launched in these trials, as the task only required sustained fixation
on the presented icon.

4.4 Procedure

Upon arrival, participants were informed about the study procedure
and provided written informed consent. The experimenter then
set up the water-based EEG recording. Participants wore the Varjo
XR-4 headset and completed a five-point eye-tracking calibration
before starting the experiment.

The study began with a training phase in which participants
familiarized themselves with the task. To prevent prior exposure to



CHI 26, April 13-17, 2026, Barcelona, Spain

Chiossi et al.

Latin Square Randomization
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with Feedback
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Launcher
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no Feedback

Figure 2: Overview of the experimental Procedure. Participants first completed a short training phase in which neutral geometric
shapes (triangle, circle, square) were used instead of real icons. The main experiment followed, where each participant performed
all four conditions (INTENT: Observe / Select x FEEDBACK: With / No) across three everyday MR scenarios (App Launcher,
Document, Video). The order of blocks was counterbalanced using a balanced Latin Williams square design. Refer to Section 4.4
for a complete description of the procedure and to Section 4.3 for a complete descriptions of the scenarios in the task.

the experimental stimuli, we used neutral icons, i.e., circle, square,
and triangle blue-shaped icons, that did not appear in the later
scenarios. During training, participants performed five practice
trials for each condition, ensuring they understood the required
actions before entering the main experiment.

At the beginning of each trial, an instruction screen specified
whether participants should select or observe the upcoming icon
and whether feedback would be provided. The instruction also
displayed the actual target icon or UI element for that trial, to
ensure participants knew in advance which element to fixate. The
instructions were as follows: (a) Select — No Feedback: “Fixate on
the target icon to select it. No feedback will be shown after your
selection” (b) Select — Feedback: “Fixate on the target icon to select
it. A short pop-up feedback will confirm your selection before the
action continues.” (c) Observe — No Feedback: “Fixate on the target
icon to observe it, keep your gaze on the icon. No feedback will
be shown.” (d) Observe — Feedback: “Fixate on the target icon to
observe it, keep your gaze on the icon. A short pop-up feedback
will appear after your fixation”

The experimental phase was structured in blocks following a
Latin Williams square design [120]. Each block contained 90 trials
and followed the trial structure illustrated in Figure 3. The full study
lasted approximately 75 minutes per participant, including setup,
training, and breaks. We depict the procedure in Figure 2.

4.5 Trial Structure

Our trial structure was inspired by previous work [15, 91], follow-
ing a real-world MR interaction paradigm, as illustrated in Figure 3.
The structure of the task, consisted of the following sequence: (1)
participants were presented with a task description lasting two sec-
onds to instruct which app to either Select or Observe; (2) a fixation
cross (“+”) appeared at the center of the camera rig, based on Thaler
et al. [111], which participants were required to fixate for a pseu-
dorandom duration (1250, 1500, or 1750 ms) [14, 15]; (3) following
successful fixation, a UI element was presented that participants
either observed or selected, requiring a dwell time of 750 ms [91];
(4) in Select trials, this dwell triggered a Ul interaction phase lasting
3000 ms. In trials with feedback, an additional feedback screen was

presented for 250 ms after the interaction (or dwell) phase; (5) the
trial concluded with a 1-second inter-stimulus interval (ISI), during
which a blank screen was shown to facilitate attentional reset and
reduce cognitive carryover effects 5, 125]. For a graphical depiction
of the trial timeline refeer to Figure 4.

Based on this structure, the total expected trial durations varied
across conditions: in the Select with Feedback condition, the trial
lasted 8500 ms; in the Select without Feedback condition, 8250 ms;
in the Observe with Feedback condition, 5500 ms; and in the Observe
without Feedback condition, 5250 ms. These differences reflect the
presence or absence of the UI interaction and feedback phases,
which are specific to the task condition.

4.6 Stimuli

In our study, we used real app icons while controlling for color to
ensure consistency and ecological validity. Recent findings by Liu
et al. [62] emphasize the importance of icon design in optimizing
search efficiency and user experience. Their results show that icons
with varied colors significantly improve search efficiency by reduc-
ing cognitive load, fixation duration, and task completion times
compared to uniform-colored icons. Furthermore, rounded square
(RS) icons outperform circular or mixed-shape icons, yielding faster
identification, fewer eye fixations, and higher user satisfaction. The
interaction between color and shape highlights that combining
rounded square icons with varied colors achieves the best perfor-
mance, enhancing search speed and minimizing cognitive effort.
Beyond icon design, perceptual factors such as object size and
viewing distance impact interaction performance in MR. We there-
fore adopted icon sizes comparable to prior MR studies, where
targets subtended visual angles of 8°-20° [91]. This choice is con-
sistent with usability guidelines showing that larger buttons ( ~
3°50”) improve speed and satisfaction compared to smaller ones (~
1°55’) [40]. Moreover, a near-interaction distance of around 80 cm,
close to average arm reach, has been recommended to maximize
comfort and efficiency [88, 90]. Together, these findings support
our use of icons subtending ~3.5° at ~80 cm as an optimal balance
between usability, speed, and perceptual accessibility in MR.
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Figure 3: Schematic of the four trial types (Select vs. Observe, with and without Feedback). All trials began with Instruction
(2000 ms), a Fixation Cross (1000 ms + variable jitter of 250, 500, or 750 ms), and a Dwell Time (750 ms). The subsequent phases
differed by condition. In the Select — No Feedback condition |, the dwell was followed directly by a UI Action (2000 ms) and
then the ISI (1000 ms). In the Select — Feedback condition I, the dwell was followed by a 500 ms Icon Feedback signal, then
a UI Action (2000 ms) and the ISI (1000 ms). In the Observe — No Feedback condition M, the dwell was followed immediately
by the ISI (1000 ms) without any system response. In the Observe — Feedback condition l, the dwell was followed by a 500 ms
Icon Feedback signal and then the ISI (1000 ms). Continuous lines indicate that a given phase (Icon Feedback or UI Action)
was present in that condition, while dotted lines indicate that the phase was absent. Each condition comprised 90 trials per
participant. In Observe trials, NO system action occurred. the interface remained static (No Feedback) or displayed only brief

confirmatory feedback (With Feedback). Only Select trials triggered consequential UI changes.

4.6.1 ERP Trials Amount Rationale. To ensure adequate statistical
power and waveform reliability, we based our trial count on empir-
ical simulations and guidelines specific to ERP research [19]. While
participant sample size primarily determines power in repeated-
measures designs, increasing the number of trials per condition en-
hances signal-to-noise ratio and improves measurement precision,
which is particularly relevant for late ERP components with high
intra-individual variability [7, 19]. Jensen and MacDonald [45] rec-
ommends aiming for 80-150 trials per condition in within-subject
ERP paradigms when targeting medium-sized effects with moder-
ate trial-level noise. Accordingly, we presented 90 trials per con-
dition, balancing practical constraints to detect condition-related
differences in SPN amplitude with sufficient power and waveform
stability.

4.7 Apparatus

We developed the virtual environment using Unity (Long-Term Sup-
port version 2022.3.x) and presented it through a Varjo XR-4 MR
headset (Varjo, Finland, 200 Hz). The XR-4 provides dual mini-LED
displays with a resolution of 3840 X 3744 pixels per eye (~ 51 pixels
per degree) and a 120° x 105° field of view. For environment track-
ing, we employed three SteamVR 2.0 base stations, following the
manufacturer’s recommendations. The XR-4 headset was tethered
to a Windows 11 workstation (HP Z1 Entry Tower G6) equipped
with an Intel Core 19 processor running at 3.8 GHz and 32 GB of
RAM.

4.7.1 EEG Recording & Preprocessing. We acquired EEG data (sam-
pling rate = 500 Hz) via LiveAmp amplifier (Brainproducts, Ger-
many) from 64 water-based electrodes from the R-Net elastic cap
(Fp1, Fz, F3, F7, F9, FC5, FC1, C3, T7, CP5, CP1, Pz, P3, P7, P9, O1,

Oz, 02, P10, P8, P4, CP2, CP6, T8, C4, Cz, FC2, FCé, F10, F8, F4,
Fp2, AF7, AF3, AFz, F1, F5, FT7, FC3, C1, C5, TP7, CP3, P1, P5, PO7,
PO3, Iz, POz, PO4, PO8, P6, P2, CPz, CP4, TP8, C6, C2, FC4, FTS,
F6, F2, AF4, AF8). We kept impedance levels below <20 kQ. We
set the reference at FCz during the recording, while FPz was used
as ground. We placed the electrodes using the International 10-10
layout. For time synchronization with the MR environment, we
employed the Lab Streaming Layer Framework, while for prepro-
cessing and analysis, we used the MNE-Python Toolbox [34]. We
first automatically detected bad or outlier channels via the random
sample consensus (RANSAC) method [6] of spherical splines for
estimating scalp potential based on algorithms proposed by Per-
rin [81]. We then applied a notch filter (50 Hz) and re-referenced
to the common average reference (CAR). We then band-passed the
signal between (1-15 Hz) to remove high and low-frequency noise.
We applied an Independent Component Analysis (ICA) for artifact
detection and correction with extended Infomax algorithm [58]. We
automated the labeling and rejection process of ICA components
via the MNE plugin “ICLabel ” [59]. We rejected epochs that showed
blinks, eye movement, muscle, or single-channel artifacts in any
of the electrodes using Bayesian optimization for threshold selec-
tion [44]. On average, we removed 6.07 (SD = 9.89) independent
components on average for each participant.

4.7.2  ERP Analysis. We segmented the continuous signal between
-1000 ms and 0 ms before UI Display. ERPs were baseline corrected
from -1000 to -750 ms as we were primarily interested in the -750
to Oms window where an SPN is to be expected. We avoided the
-850 to -750ms range due to the fixation-related Lambda response
resulting from the first fixation on the target stimulus [95]. The
SPN was thus quantified as negative peak amplitudes in the -750
ms — 0 ms range [91]. For SPN computation, we chose electrodes
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Figure 4: Trial structure across Intent and Feedback conditions. The timeline illustrates the sequential phases of a single trial
across four experimental conditions: Select (with and without feedback) and Observe (with and without feedback). All trials
began with a 2-second instruction screen, followed by a fixation cross with a jittered duration (1000 + 250 / 500 / 750 ms).
Participants then fixated on a Ul element for 750 ms to select or observe it. In Select trials, a UI interaction was triggered for
3000 ms, coherent with the intention to Select. In Observe trials, no interaction followed the gaze dwell. When feedback was
enabled, it was presented immediately after dwell time for 500 ms, preceding the UI phase. Finally, all trials concluded with a
1-second inter-stimulus interval (ISI) to allow attentional reset. For visualization purposes, the figure aligns all conditions to

the same trial duration (8500 ms).

01, Oz, 02,1z, PO7, PO3, POz, PO4, POS, P5, P6, P7, P8, P9, and P10
based on previous work [91].

4.8 Statistical Modelling

We compared a set of linear mixed models predicting SPN ampli-
tude (neg_peak) from Intention (Observe vs. Select) and Feedback
(Feedback vs. No Feedback). Random-effect structures were incre-
mentally expanded from including only participant (PID) to adding
Order, channel, and Scene as grouping factors. Model comparison
was performed using maximum likelihood estimation and likeli-
hood ratio tests [117]. The best-fitting model, selected with the
lowest Akaike Information Criterion (AIC), included random in-
tercepts for PID, channel, and trial. Full model fitting results are
reported in the Appendix in Table 1.

To assess generalizability across interaction contexts, we con-
ducted a sensitivity analysis with Scene as a fixed factor. We com-
pared models with Scene as: (1) a random effect (baseline), (2) a
fixed main effect, (3) with two-way interactions (Intention:Scene,

Feedback:Scene), and (4) with the three-way Intention X Feedback
X Scene interaction. This tests whether the core pattern replicates
across the three scenarios or requires specification of boundary
conditions.

4.9 Sample Size Justification & Participants

An a priori power analysis was conducted using G*Power (version
3.1), to estimate the required sample size for a study analyzed with
linear mixed-effects models [29]. The analysis assumed a medium
effect size (f = .25) based on HCI guidelines [129], an alpha level
of .05, and a desired power of .80. The correlation among repeated
measures was set to .50, and the nonsphericity correction was set
to 1.00. The results indicated that a minimum total sample size of
24 participants is required to achieve a desired statistical power
(actual power = .817). A total of 28 participants took part in the study,
resulting in an actual power of .88. The sample included 20 males
and 8 females, none diverse. Participants’ ages ranged from 18 to 32
years (mean = 23.6, SD = 3.1). The participants’ familiarity with AR,
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AV, and VR technologies was assessed, following previous work
[14, 15]. All participants had prior exposure to AR (M =3.2,SD =
1.4), AV (M = 2.9, SD = 1.6), and VR (M = 4.1, SD = 1.7) technologies,
rated on a 7-point scale ranging from 1 (not familiar at all) to 7
(extremely familiar). Exclusion criteria for participants included a
medical history of psychological or neurological disorders, color
blindness, and visual impairments.

4.10 Classification

We evaluated two complementary decoding strategies to assess
the robustness of multimodal EEG-based intention classification: a
person-dependent setting, which estimates how well models adapt to
individual neural patterns, and a person-independent setting, which
evaluates generalization to unseen users.

4.10.1 Data Preparation. For the person-dependent models, a sep-
arate dataset was created for each participant. Trials were split into
training (60%), validation (20%), and test (20%) subsets on a per-
participant basis. An additional 80/20 split of the training data was
used during hyperparameter optimization to prevent data leakage
and ensure that the final test set remained unseen.

For the person-independent models, all trials from all partici-
pants were first aggregated and assigned participant identifiers.
The dataset was then partitioned at the participant level: 60% of
participants were used for training, 30% for validation, and the
remaining 10% for testing. This ensured that no trial from any test
participant influenced model training or hyperparameter tuning.

4.10.2  Feature Extraction. For both settings, we used the same
preprocessing pipeline described in Section 4.7.1. Epochs were ex-
tracted from the SPN analysis window (~750 to 0 ms) and baseline-
corrected to the —1000 to —750 ms interval. Trials were represented
as (N, C,T) tensors and passed directly to the CNN architectures,
allowing models to learn hierarchical spatiotemporal features of an-
ticipatory EEG activity without manual feature engineering [21, 65].

4.10.3 Model Selection. We evaluated five established deep learn-
ing architectures for EEG decoding: EEGNetv4 [56], ShallowFBC-
SPNet and Deep4Net [99], EEGResNet [13], EEGInceptionERP [97].
Models were trained with 100 epochs in the person dependent anal-
yses and 100 epochs in the person independent setting, using Adam,
AdamW, or RMSProp optimizers (sampled during hyperparameter
search). Early stopping on validation accuracy mitigated overfitting.

4.10.4 Hyperparameter Optimization. Hyperparameter optimiza-
tion was performed using the Optuna framework [2]. In the person-
dependent setting, optimization was conducted separately for each
participant using the inner validation split. In the person indepen-
dent setting, hyperparameters were tuned exclusively on trials from
the validation participants, with 540 trials per architecture. Search
spaces included filter sizes, kernel lengths, depth multipliers, pool-
ing parameters, activation functions, batch sizes, and optimizer
settings. Each model was subsequently retrained using the best-
performing configuration.

4.10.5 Evaluation. Evaluation procedures matched the goals of
each setting. For the person-dependent models, performance was
computed on each participant’s held-out test data and compared
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across architectures using paired-samples t-tests on participant-
wise accuracies. For the person-independent models, performance
was evaluated on trials from test participants only, representing
true zero-overlap generalization to unseen individuals. Because this
setting yields a single pooled value per model, we report accuracy
differences and bootstrap confidence intervals (10,000 resamples)
[20, 113] instead of participant-wise paired statistics.

LIME-Based Interpretability Analysis. To examine how our neural
networks relied on specific EEG features, we employed Local Inter-
pretable Model-agnostic Explanations (LIME), a perturbation-based,
model-agnostic framework that explains individual predictions
through locally linear surrogate models [94]. For each EEG trial,
LIME generates a set of perturbed variants by randomly masking
spatiotemporal segments and evaluating how these perturbations
alter the network’s output. A weighted linear regression is then
fitted over these perturbation-response pairs, with higher weights
assigned to perturbed samples that remain closer to the original
input. The resulting coefficients form a saliency map that highlights
the EEG channels and time points most influential for that specific
prediction. Recent work demonstrates that LIME is effective in cap-
turing stable and physiologically meaningful explanatory patterns
in deep EEG models [93], making it well-suited for interpreting our
classifier’s reliance on preparatory/SPN-related neural activity.

5 Results

We present results from both ERP analyses of the SPN component
and deep learning-based classification of user intention. For a sum-
mary of the results, we refer the reader to Section 6.1.

5.1 SPN Amplitude

We fitted a linear mixed model, estimated using restricted maximum
likelihood (REML) and the nloptwrap optimizer, to predict SPN am-
plitude (neg_peak) from Intention (Observe vs. Select) and Feedback
(With vs. No). The model included random intercepts for partic-
ipant (PID), order, channel, and scene. The model’s explanatory
power was substantial, with a conditional R? = 33, although the
variance explained by the fixed effects alone was small (marginal
R% = 0013).

The model intercept, corresponding to Select trials with Feed-
back, was significantly negative, f = —8.17, 95% CI [—10.35, —6.00],
£(71,901) = —7.36, p < .001. Compared to this baseline, Observe tri-
als showed significantly larger (less negative) amplitudes, § = 1.02,
95% CI [0.85, 1.20], £(71,901) = 11.45, p < .001, standardized § = .11,
95% CI [.10, .13]. Likewise, trials without Feedback were associated
with significantly larger amplitudes, f = .44, 95% CI [0.26, 0.61],
£(71,901) = 4.96, p < .001, standardized § = .05, 95% CI [.03, .07].
Importantly, the Intention X Feedback interaction was significant,
indicating that the difference between Observe and Select trials
was reduced in the absence of Feedback, f = —0.96, 95% CI [-1.21,
—0.71], £(71,901) = —7.60, p < .001, standardized § = —.11, 95% CI
[—.14, —.08].

5.1.1 Sensitivity Analysis. We assessed whether the Intention X
Feedback pattern generalized across the three MR scenarios. Model
comparison showed that two-way interactions with Scene signifi-
cantly improved fit (y?(4) = 70.56, p < .001, AIC = 508,389 vs. baseline
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Figure 5: Grand-average ERP waveforms and SPN scalp topographies across experimental conditions. The ERP plot displays the
grand-average activity at the posterior ROI ( 01, Oz, 02, Iz, PO7, PO3, POz, PO4, PO8, P5, P6, P7, P8, P9, and P10) with shaded
areas indicating the 95% confidence intervals. The pre-stimulus baseline window (-1000 to —750 ms) is shown in purple, and the
SPN window (-750 to 0 ms) is shaded in beige; the vertical dashed line indicates stimulus onset (0 ms). The scalp maps below
illustrate mean voltage distributions during the SPN interval for each condition. Observe-No Feedback elicited the strongest
anticipatory negativity, whereas both the intention to select and the presence of feedback reduced the SPN magnitude.

AIC = 508,457). However, the three-way interaction did not further
improve the model (y%(2) = 1.64, p = .440), indicating that the core
pattern replicated consistently.

The Intention X Feedback interaction showed consistent effect
sizes across scenarios: ff = —0.88 4V (SE = 0.13, z= —6.92, p < .001) for
App Launcher, Document, and Video contexts. In all three scenarios,
observation without feedback produced the strongest SPN, while
selection intent and feedback presence both reduced anticipatory
activity. This replication demonstrates that SPN reflects anticipatory
uncertainty across diverse MR interaction contexts.

5.2 Classification Results

5.2.1 Person-Dependent Classification. Across participants, mean
validation classification accuracies (M + SD) were as follows: EEGIn-
ceptionERP (M = .784, SD = .090, 95% CI [.749, .819]), EEGResNet (M
=758, SD = .080, 95% CI [.727, .789]), ShallowFBCSPNet (M = .742,
SD = .080, 95% CI [.711, .773]), EEGNetv4 (M = .736, SD = .067, 95%
CI [.710, .761]), and Deep4Net (M = .732, SD = .078, 95% CI [.702,
.762]). Paired-samples ¢-tests were conducted to compare model

performance across participants. EEGInceptionERP significantly out-
performed EEGNetv4, t(27) = -3.18, p = .003; Deep4Net, t(27) = -3.47,
p =.002; and ShallowFBCSPNet, t(27) = 2.93, p = .007. Additionally,
EEGResNet significantly outperformed Deep4Net, 1(27) = 2.48, p =
.020.

No significant differences were found between EEGNetv4 and
EEGResNet, 1(27) = -1.84, p = .077; EEGNetv4 and Deep4Net, 1(27) =
0.35, p = .726; EEGNetv4 and ShallowFBCSPNet, t(27) = -0.49, p = .626;
EEGResNet and EEGInceptionERP, t(27) = -1.71, p = .099; EEGResNet
and ShallowFBCSPNet, t(27) = 1.19, p = .243; and Deep4Net and
ShallowFBCSPNet, t(27) = -0.64, p = .530.

These results indicate that EEGInceptionERP provided the most
reliable classification of user intention on a person-dependent basis.
It significantly outperformed three of the four other models and
demonstrated robust performance across participants. EEGResNet
also showed consistently high accuracy and significantly outper-
formed Deep4Net.

Computational Footprint and Latency. Across all trained archi-
tectures, the computational requirements of the decoding pipeline
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Figure 6: Topographic maps of ERP activity from -1000 ms to stimulus onset (0 ms) across the four experimental conditions.
Each column represents a 100 ms step, and rows correspond to conditions (Observe No Feedback, Observe With Feedback, Select
No Feedback, Select With Feedback). A sustained posterior negativity (blue shading) is evident over occipito-parietal electrodes
during the anticipatory interval, with the strongest SPN emerging in the Observe-No Feedback condition. Both the intention to

select and the availability of feedback increased this negativity.

were low in absolute terms. Model sizes ranged from 0.44 MB (EEG-
Netv4, 115k parameters) to 4.87 MB (Deep4Net, 1.27M parame-
ters), with EEGInceptionERP positioned in between at 1.22 MB
(318k parameters). Inference times followed the same trend: EEG-
Netv4 required an average of 0.67 ms (SD=0.34; median=0.59 ms;
p95=1.12 ms; p99=1.25 ms), EEGInceptionERP 1.75 ms (SD=0.40; me-
dian=1.70 ms; p95=2.38 ms; p99=2.62 ms), and Deep4Net 3.07 ms
(SD=0.91; median=2.85 ms; p95=4.52 ms; p99=4.89 ms). All archi-
tectures achieved more than 7.6 predictions per second. These
values were derived using the same SPN-based input representa-
tion (-750 to 0 ms window) for both person-dependent and person-
independent models.

To contextualize these values within an interactive pipeline, a full
SPN window corresponds to 750 ms of EEG acquisition, to which
preprocessing and inference contribute less than 5 ms in total. This
latency is comparable to standard dwell-time selection in MR in-
terfaces, which typically require 500-1000ms fixation durations
[68, 83]. The 770-785ms window falls within this range, making
SPN-based intention decoding feasible for adaptive systems that
adjust dwell-time thresholds, provide graduated confirmations, or
trigger contextual assistance. Importantly, the computational over-
head (<5ms) is negligible relative to the inherent SPN acquisition
window (750ms), meaning faster EEG hardware or reduced temporal
windows could further decrease total latency without algorithmic
bottlenecks. Real-time implementation would require streaming
EEG preprocessing and online classification, which prior work has
demonstrated for similar BCIs [4, 56, 65].

5.2.2  Person Independent Classification. For the person indepen-
dent setting, each model yields a single pooled validation accu-
racy because training and evaluation occur on disjoint participant
groups.

To quantify uncertainty around the pooled estimates, we com-
puted non-parametric bootstrap confidence intervals (10,000 resam-
ples) based on related work [7, 20, 45].

Mean accuracies with 95% bootstrap confidence intervals were:
Deep4Net (M = .692, 95% CI [.673, .712]), EEGNetvd (M = .662, 95%
CI [.642, .681]), ShallowFBCSPNet (M = .642, 95% CI [.621, .662]),
EEGInceptionERP (M = .631, 95% CI [.610, .651]), and EEGConformer
(M = .506, 95% CI [.487, .525]).

5.2.3 LIME-Based Interpretability. To examine which EEG features
drove each classifier’s decisions, we performed LIME perturba-
tion analyses on correctly classified trials and aggregated saliency
maps per participant and per model. Across architectures, feature
importance was strongly localized over centro-parietal and pari-
eto—occipital sites corresponding to canonical slow negative SPN
activity. Below we report model-specific topographies and quanti-
tative interpretability metrics.

EEGNetv4. LIME maps for EEGNetv4 showed a focal cluster
centered on Pz, CPz, Cz, extending into POz, PO3, PO4, O1, 02, Iz.
Spatial and temporal concentration were near ceiling (Hpatial = -99,
Hiemporal = -98), and inter-trial variability was minimal (SD <
.001), indicating stable and physiologically consistent reliance on
posterior preparatory components, see Figure 7.

ShallowFBCSPNet. ShallowFBCSPNet produced a highly simi-
lar posterior pattern, with peak importance over CP1-CP4, P1-P4,
P5/P6, PO3/PO4. Concentration metrics remained extremely high
(Hspatial = -99, Hiemporal = -99), with very low inter-trial dispersion
(SD < .001). The model emphasized midline and adjacent parietal
channels consistent with prior SPN literature, see Figure 8.
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Deep4Net. Deep4Net saliency maps showed the broadest but still
physiologically coherent distribution, centered on Pz, CPz, P3/P4,
P5/P6, with contributions from O1/02 and POz. Concentration val-
ues remained high (Hgpatial = -98, Hiemporal = -98), and inter-trial
stability was again excellent (SD < .001), demonstrating consistent
posterior weighting across samples, see Figure 9.

EEGResNet. EEGResNet exhibited the most sharply localized
pattern, with maximal saliency at the midline parietal cluster CPz—
Pz—POz and secondary contributions at P1/P2 and PO3/PO4. Both
spatial and temporal concentration approached unity (Hspatial = 99,
Hiemporal = -98), and inter-trial variability was negligible (SD <
.001), indicating strongly convergent usage of SPN-related features,
see Figure 10.

EEGInceptionERP.. The Inception-based model showed a charac-
teristic parietal-occipital ring, with peak importance at PO7/PO8,
PO3/P0O4, P5/P6, 01/02, Iz. As with the other architectures, entropy-
based concentration was extremely high (H > .99), and explanation
stability was strong (SD < .001). The model’s weighting of late SPN
timepoints was consistent with its high temporal filter resolution,
see Figure 11.

6 Discussion

This work provides the first demonstration that anticipatory EEG
signals during realistic MR interaction not only reveal how users
monitor system behavior under uncertainty, but also contain suffi-
ciently discriminative information to support intention decoding
through deep learning. Below, we summarize our main empirical
findings before discussing our hypotheses, research questions and
their implications for MR interaction design and adaptive interfaces.

6.1 Summary of Results

We examined how user intention (Select vs. Observe) and system
feedback (With vs. Without) shape anticipatory neural activity
during gaze-based interaction in MR. Participants interacted with
familiar interface elements across everyday MR scenarios while
EEG was recorded to measure the SPN.

Across all conditions, a robust SPN emerged, showing that an-
ticipatory neural activity reliably manifests during naturalistic MR
interaction and is not confined to controlled laboratory tasks. The
SPN was strongest when participants merely observed an icon with-
out receiving feedback, suggesting that SPN reflects heightened
monitoring under uncertainty rather than intention preparation
alone. Intention and feedback further interacted: in Select trials,
SPN amplitudes remained stable regardless of feedback, whereas
in Observe trials, feedback markedly reduced anticipatory activity.
When both intention and feedback were present, SPN amplitudes
again became more negative, indicating greater engagement when
system responses aligned with user goals.

Sensitivity analysis confirmed that these patterns replicated
across all three MR scenarios (App Launcher, Document, Video).
While effect magnitudes varied by context, likely reflecting dif-
ferences in task demands or visual complexity, the fundamental
Intention X Feedback interaction remained consistent across all
scenarios. This replication demonstrates that SPN’s sensitivity to
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anticipatory uncertainty generalizes across diverse MR interaction
types rather than being limited to specific interface contexts.

Beyond the ERP findings, we evaluated whether user intention
could be decoded from anticipatory EEG. In the person-dependent
setting, deep learning models classified Select vs. Observe trials
with high accuracy (mean performance up to 78%; individual par-
ticipants up to 97%), with EEGInceptionERP showing the strongest
performance. In the person independent setting, i.e., evaluating
generalization to unseen users, accuracy decreased (best model:
Deep4Net, M = .692, 95% CI [.673, .712]). Importantly, across both
settings, the two classes were detected equally well: per-class ac-
curacies differed by less than 3-5%, and no architecture exhibited
systematic bias toward either intention class. Across all architec-
tures, LIME-based saliency analyses revealed highly consistent and
physiologically plausible patterns, with every model relying on cen-
tro—parietal and parieto—occipital SPN components to distinguish
Select from Observe trials. Despite architectural differences, the
models converged on similar anticipatory neural features.

Taken together, these findings contribute in four complemen-
tary ways. First, they confirm that the SPN is robustly elicited
across ecologically valid MR interactions, establishing it as a reliable
marker of anticipatory processing outside traditional laboratory
tasks. Second, they refine theoretical interpretations by showing
that the SPN indexes anticipatory uncertainty rather than motor
preparation, shaped by the joint influence of intention and sys-
tem feedback. Third, they demonstrate that user intention can be
decoded from anticipatory EEG using deep learning, with high reli-
ability in a person-dependent setup and meaningful generalization
in person-independent models. Finally, they highlight implications
for adaptive MR design: SPN-derived signals could help mitigate
false activations (i.e., the Midas Touch problem), guide the tim-
ing and richness of system feedback, and be integrated with other
modalities, such as pupil size or electrodermal activity, to support
more intention-aware and uncertainty-sensitive interfaces.

6.2 H1: SPN is a Robust Marker of Anticipation
in MR

Our first hypothesis predicted that SPN would be detectable during

gaze-based MR interactions across all task conditions. This was

supported: we observed reliable SPN activity in every experimental

condition and scenario, demonstrating that anticipatory signals can

be measured consistently in MR.

This finding extends SPN research beyond highly constrained
laboratory tasks to ecologically valid MR contexts where users
interacted with everyday UI elements. Earlier studies reported
SPN-like negativity in constrained settings such as gaze-controlled
games [106] or VR selection [91]. Our results extend this evidence
to everyday MR tasks, including app launching, document edit-
ing, and media playback, demonstrating that SPN is not limited to
simplified paradigms but also emerges in more ecologically valid
interaction contexts.

Critically, our design isolated anticipatory processes from motor
preparation by eliminating overt motor actions, as all interactions
relied solely on gaze, with no button presses or hand movements
that would introduce motor-related potentials such as the RP or
LRP [26, 105]. This exclusion of motor components allows us to
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attribute the observed negativity specifically to anticipatory mon-
itoring rather than action preparation. The centro-parietal scalp
distribution we observed (see Figure 6) aligns with canonical SPN to-
pography reported in non-motor anticipation tasks [8, 114], further
supporting the interpretation that these signals reflect cognitive
anticipation of upcoming events rather than motor readiness. More-
over, the pattern that Observe trials, particularly those without feed-
back, elicited stronger SPN than Select trials directly contradicts
what motor preparation accounts would predict, since committing
to act should increase motor-related activity rather than decrease
it. Instead, our findings align with theoretical accounts positioning
SPN as a marker of anticipatory uncertainty and outcome monitor-
ing [71, 101, 119], where the brain allocates preparatory resources
in proportion to the unpredictability of forthcoming events.

6.3 H2: Observation Elicits Stronger
Anticipatory Activity Than Selection

Our second hypothesis predicted stronger SPN amplitudes during
Intent-to-Select trials, assuming that goal-directed actions require
greater anticipatory engagement. Results pointed in the opposite di-
rection: Observe trials, especially those without feedback, produced
the most pronounced SPN.

This unexpected finding challenges traditional interpretations of
SPN as primarily preparatory [8] instead supports accounts linking
it to anticipatory uncertainty and monitoring demands [71, 119].
Passive observation without feedback created outcome uncertainty,
producing heightened anticipatory activity, while committing to
selection reduced ambiguity about upcoming events, leading to
weaker SPN amplitudes. Earlier work in VR and gaze-controlled
tasks [91, 106] reported larger SPN during active selection, but in
those designs intention was inseparable from a guaranteed system
response. Our factorial approach separates these factors, showing
that SPN is more sensitive to uncertainty about outcomes than to
the intention to act itself.

This theoretical refinement repositions SPN as a marker of ex-
pectancy and uncertainty management, modulated by outcome
predictability rather than action preparation alone.

6.4 H3: Intention and Feedback Jointly Shape
Anticipation

Our third hypothesis predicted that intention effects would remain
consistent regardless of feedback presence, following Reddy et al.
[91] findings that SPN is driven by intent rather than feedback.
This hypothesis was not supported. Instead, we found a significant
interaction between intention and feedback conditions, showing a
pattern not previously described in the SPN literature.

In Select trials, SPN amplitudes stayed stable across feedback con-
ditions, suggesting that once users commit to acting, anticipation is
relatively insensitive to whether feedback is present. In Observe tri-
als, however, feedback markedly reduced SPN, showing that passive
monitoring is strongly shaped by outcome predictability.

This interaction represents a novel finding that SPN reflects both
internal goals and external contingencies rather than being purely
intention-driven. Classic and review work already argued for a non-
motoric SPN sensitive to upcoming events [8, 17, 114], and recent
studies show that relevance and uncertainty combine to shape SPN

CHI *26, April 13-17, 2026, Barcelona, Spain

during feedback anticipation [119]. In VR selection tasks, larger
SPN during active intent has been reported [91, 106], yet those
paradigms intertwined intention with guaranteed feedback.

Our manipulation separates these factors and suggests that SPN
tracks anticipatory monitoring under outcome uncertainty: feed-
back availability strongly attenuates SPN during passive observa-
tion, but has little impact once users commit to acting. Related evi-
dence that SPN scales with uncertainty or attention allocation [52,
101] supports this refinement and helps explain why SPN can peak
in Observe-No Feedback despite weaker action demands.

Together with prior work showing that SPN scales with relevance
and uncertainty during outcome anticipation [101, 119] and with
XR studies linking intent-to-select to larger pre-event negativity
[91, 106], our results suggest that SPN reflects the balance between
internal goals and outcome predictability rather than intention
alone.

6.5 RQ: Decoding Intention from EEG

Our research question asked to what extent intention (SELECT vs.
OBSERVE) can be decoded from EEG signals within participants
using deep learning. To address this, we conducted offline classifica-
tion analyses with five established CNN architectures (EEGNetv4,
ShallowFBCSPNet, Deep4Net, EEGResNet, and EEGInceptionERP)
in a person-dependent setup, with hyperparameters tuned sepa-
rately for each participant.

Classification accuracies ranged widely from 75% to 97% across
participants, highlighting substantial individual differences that
would require personalized calibration in practical applications.
EEGInceptionERP achieved the highest mean accuracy (78.4%), fol-
lowed by EEGResNet (75.8%), though the large variance indicates
that some participants exhibited more separable neural patterns
than others.

These offline results demonstrate that anticipatory EEG activity
during the -750 to Oms window contains discriminative informa-
tion about user intention. However, several limitations constrain
the immediate applicability to real-time MR systems: the person-
dependent approach necessitates individual training and the com-
putational requirements and latency constraints of online classifica-
tion remain untested. Even so, the results establish a computational
basis for intention-aware MR systems, showing that user goals
can be inferred from anticipatory EEG and pointing toward the
next step of validating such methods in real-time, interactive MR
environments.

6.6 Implications for Adaptive MR Interfaces

Our findings showed that SPN is consistently elicited in MR (H1),
is shaped by both intention and feedback (H2-H3), and can be
decoded with reasonable accuracy within participants (RQ). Rather
than treating SPN as a simple binary marker of intent, these results
point to its broader role as an indicator of an anticipatory state that
integrates intention with uncertainty and monitoring demands.
Our results indicate that SPN reflects not only intention but
also anticipatory uncertainty. This broader view opens several de-
sign directions for adaptive MR. Increased SPN during uncertain
observation could prompt the system to offer lightweight cues
or confirmations, while stable SPN during committed selections
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suggests opportunities to streamline interaction by reducing redun-
dant steps. Variability in SPN patterns may further differentiate
exploratory from committed gaze, informing adaptive dwell thresh-
olds or graduated feedback strategies. Finally, person-dependent
decoding demonstrates the feasibility of classifiers that adapt to
user-specific uncertainty profiles. Combined with complementary
signals such as pupil size and EDA, SPN could contribute to a mul-
timodal pipeline for uncertainty detection. Pupil-linked arousal
reliably encodes decision uncertainty and shapes choice behav-
ior [28, 36], while EDA captures anticipatory arousal in emotionally
salient and uncertain contexts [108, 122]. Together, these measures
provide converging evidence of user uncertainty, enabling more
robust disambiguation of gaze states in complex MR environments.

In sum, SPN emerges as a promising input for adaptive interfaces:
not only as a signal of intent, but as a richer marker of anticipatory
state that can guide feedback, disambiguate gaze, and support per-
sonalized interaction strategies. In the following, we propose and
discuss potential example use cases.

6.6.1 Example Use Cases. We follow prior HCI work that links
sensing results to concrete interaction scenarios, such as Vibro-
Comm’s vibroacoustic applications [126] and Pose-on-the-Go’s
smartphone-based pose applications [1]. We outline three adaptive
MR mechanisms enabled by our findings that SPN directly measures
anticipatory uncertainty, varies continuously within individuals,
and replicates across interface contexts.

Dynamic Dwell-Time Adjustment. Fixed dwell times force users
to choose between speed and accuracy. Recent approaches adapt
dwell based on gaze behavior: Gazelntent [74] predicts selection
intent from fixation patterns and eye movement velocity, with per-
sonalized models preferred by 63% of users. However, gaze behavior
alone conflates multiple cognitive states, slow eye movements might
indicate careful deliberation or simply tracking difficulty [23].

Our SPN measure resolves this ambiguity by revealing the user’s
internal certainty during the first 400ms of looking at a target. When
the system detects high uncertainty (matching the pattern we ob-
served during passive observation without feedback), it extends
the required dwell time to prevent premature errors. When uncer-
tainty is low (matching the pattern during confident selection with
feedback), the system reduces dwell time to accelerate interaction.
This approach distinguishes genuine hesitation from motor noise: a
user looking slowly with high neural uncertainty needs more time
to decide, while a user looking slowly with low uncertainty sim-
ply has slower eye movements. A practical implementation would
combine gaze dynamics for rapid behavioral assessment with SPN
for cognitive certainty, creating a two-layer adaptive system that
responds within 400ms of fixation onset.

Uncertainty-Contingent Confirmation. Multimodal confirmation
strategies, such as Gaze+Pinch [83] and DualGaze [70], are designed
to reduce false positives but apply the same confirmation require-
ments regardless of user certainty. Systems either always require
confirmation (eliminating errors but slowing interaction) or never
require it (speeding interaction but allowing mistakes).

Our findings enable graduated confirmation that adapts to real-
time cognitive state. When the system detects high confidence,
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selections execute immediately with a brief undo window, opti-
mizing speed. Under moderate uncertainty, the system requires
subtle confirmation, e.g., a brief sustained gaze or icon highlight,
balancing prevention and efficiency. When uncertainty is high,
explicit confirmation is required via controller press or extended
dwell. This three-tier approach addresses a limitation Wolf et al.
[123] identified in AR manual tasks: their system detected when
users looked at one object while reaching for another, but could not
assess confidence when gaze and action aligned correctly. Combin-
ing their gaze-hand coordination framework with our uncertainty
measure enables warnings like "You appear uncertain—confirm this
selection?" before executing potentially costly actions in sequential
workflows.

Personalized Interaction Profiles. Current approaches in person-
alization adapt single dimensions, such as dwell time [74], spatial
ability [133], or gender preferences [102], using behavioral proxies.
However, our classification results revealed substantial individual
differences: person-dependent models achieved up to 97% accuracy
while person independent models reached only 69%, indicating that
neural uncertainty patterns vary systematically across individuals.

We propose characterizing users along three dimensions dur-
ing brief calibration. First, baseline uncertainty disposition distin-
guishes users who naturally exhibit high monitoring activity during
observation from those who show low anticipatory activity. Sec-
ond, feedback sensitivity quantifies how much users rely on system
confirmations to resolve uncertainty. Our results showed that some
users reduced uncertainty with feedback, while others exhibited
minimal change. Third, context specificity reveals whether uncer-
tainty patterns generalize across interface types or vary by domain.
These profiles enable tailored interfaces: users with low baseline
uncertainty receive streamlined designs with minimal feedback,
while users with high uncertainty receive guided interfaces with
prominent confirmations and safety mechanisms. Users exhibiting
context-specific patterns receive adaptive mode switching, which
adjusts behavior across both familiar and novel interface elements.
This person-centered approach, grounded in neural signatures, con-
trasts with group-centered rules based on demographics. Future
implementations could track how profiles evolve with expertise
and combine SPN with pupil dilation and electrodermal activity to
monitor cognitive state multimodally across multiple timescales.

6.7 Limitations and Future Work

While our study demonstrates robust SPN effects in MR and their
modulation by intention and feedback, its scope is not the vali-
dation of a complete MR interaction technique or user-facing UI
adaptations. Instead, we focus on establishing SPN as an implicit
neural marker of anticipatory states during ecologically valid gaze-
based MR interaction. Accordingly, the limitations discussed below
primarily concern how this signal can be further interpreted, dis-
ambiguated, and integrated into future MR systems.

First, our design did not directly probe how users respond when
system feedback contradicts their expectations. A useful extension
would be to include a control condition in which participants oc-
casionally receive feedback unrelated to their actions. Presenting
such unexpected feedback would allow testing for error-related po-
tentials (ERN/Ne) in addition to SPN [11]. Beyond scientific interest,
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detecting error-related responses could provide practical value for
MR interfaces by identifying when users recognize system misac-
tivations, thus enabling automatic error correction or confidence
calibration in gaze-based selection systems.

Second, while our results suggest that SPN reflects anticipatory
uncertainty rather than pure intention, this ambiguity poses chal-
lenges for application. Distinguishing between "I am about to act”
and "I am uncertain what will happen" is central for adaptive MR,
yet both states can produce similar SPN responses. Future work
should systematically vary both Intention (Select vs. Observe) and
Uncertainty through controlled manipulations of system reliability
or temporal predictability. Such studies would clarify whether SPN
primarily reflects outcome unpredictability and whether clear inten-
tions help stabilize anticipatory responses. Moreover, we acknowl-
edge that, from a user’s subjective perspective, both conditions may
appear similar, as sustained gaze leads to a system-side event in
both cases, and the distinction between a Ul action and a non-UI
action may not always be consciously articulated.

Third, our study examined anticipation at the level of single
fixations, whereas real MR interaction unfolds across sequences of
revisits, comparisons, and scanpath motifs. SPN provides a robust
index of pre-event anticipation, but its slow dynamics limit insights
into how expectancy evolves across multi-step interaction flows [27,
124]. Future work could integrate SPN analysis with scanpath-based
measures from eye tracking to capture how anticipatory states
develop across extended MR tasks. Such multimodal approaches
would help bridge neural markers of anticipation with the temporal
variance of natural MR gaze behavior.

Fourth, Select and Observe conditions shared identical senso-
rimotor demands (750ms gaze fixation). While this matching was
intentional to isolate cognitive intention from motor confounds (by
avoiding RP/LRP from button presses), it raises questions about
whether participants genuinely maintained distinct internal goals.
Three lines of evidence support the manipulation’s validity: a sta-
tistically robust main effect of Intention, a significant Intention x
Feedback interaction demonstrating differential processing of antic-
ipated outcomes (if both were treated as selection, feedback should
have modulated them equivalently), and high classification accu-
racy (75-97%) achieved before any visual response. Nevertheless,
future work could strengthen this through post-trial subjective rat-
ings of intention clarity, think-aloud protocols, or complementary
motor actions, though the latter would introduce motor preparation
potentials that complicate SPN interpretation.

Fifth, although we report both person-dependent and person-
independent decoding, these two settings were treated as sepa-
rate modeling problems. Here, a next step is to explore hybrid
approaches that combine population-level pretraining with effi-
cient user-specific adaptation. Prior work in EEG transfer learning
has shown that multi-user pretraining followed by user-level adap-
tation can substantially improve generalization across individuals
[35]. Rather than training a new model for each participant or re-
lying solely on cross-subject learning, a unified multi-user model
could first be trained to capture generalizable anticipatory EEG pat-
terns and then adapted to a new user with minimal calibration data.
Treating each user as a distinct domain aligns with recent advances
in EEG domain adaptation, which highlight the need for feature
alignment and subject-invariant representations [60, 65, 127, 132].
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Techniques such as lightweight fine-tuning, adapter modules, or
feature-alignment methods could therefore provide a principled
path toward rapid personalization. Such a strategy has the potential
to increase robustness, reduce calibration time, and support more
reliable deployment of intention-aware MR systems in real-world
settings.

Finally, while this work focuses on neural and behavioral mark-
ers of anticipation, complementary qualitative methods such as
interviews or post-task questionnaires could enrich future studies
by capturing how users consciously interpret feedback, control, and
system behavior. However, such methods are inherently limited
in their ability to access pre-reflective anticipatory processes that
unfold before overt action. We therefore view qualitative inquiry
as a complementary layer that can contextualize neural markers,
rather than as a substitute for measuring implicit cognitive states
that users may not be able to reliably report.

7 Conclusion

We investigated how to decouple attention and intention in MR by
leveraging gaze and EEG, addressing the core of the Midas Touch
problem. Our results show that SPN is robustly elicited across ev-
eryday MR tasks, strongest under uncertainty, and shaped by the
interaction of intention and feedback. This reframes SPN from a
preparatory potential to a marker of anticipatory uncertainty with
direct implications for adaptive interface design. We also demon-
strated that user intention can be reliably decoded with deep learn-
ing, achieving accuracies up to 97% in person-dependent models.
Together, these findings establish SPN as both a theoretical marker
of anticipatory states and a practical signal for building intention-
aware MR interfaces that reduce false activations and personalize
interaction.

Open Science & Transparency

We encourage readers to reproduce and extend our results and anal-
ysis methods. Therefore, our experimental setup collected datasets,
and analysis scripts are openly available on the Open Science Frame-
work (http://osf.io/9x6jy/). During the preparation of this work, the
authors used OpenATl’s GPT-5 and Grammarly for grammar and
style editing. All content was reviewed and edited by the authors,
who take full responsibility for the final publication.
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A Appendix
A.1 Model Selection

To identify the most appropriate random-effects structure, a se-
ries of nested linear mixed-effects models were compared using
maximum likelihood estimation. Models differed in the inclusion
of random intercepts for Order, channel, and Scene, in addition to
the baseline random intercept for PID. Model fit was evaluated
using Akaike’s Information Criterion (AIC), Bayesian Information
Criterion (BIC), and likelihood ratio tests.

Likelihood ratio tests confirmed that the full model (PID + Trial
+ Channel + Scene) provided a significantly better fit than simpler
alternatives (all p < .001). Accordingly, this model was selected for
all subsequent analyses.

A.2 Neural Networks Saliency Maps

To better understand how each neural network made its predictions,
we generated LIME-based saliency maps for all five architectures.
These visualizations highlight which EEG channels and time pe-
riods contributed most to the model’s decision for each trial. By
averaging saliency values across correctly classified samples and
participants, we obtain a stable picture of the neural features each
architecture relies on. The following figures show both the tempo-
ral importance patterns and the corresponding scalp topographies
for Select and Observe conditions, as well as their difference.
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Figure 7: LIME-based saliency maps for EEGNetv4. Top panels show temporal heatmaps of LIME feature importance across
all 64 EEG channels and 750 time samples for Select (Class 0, left) and Observe (Class 1, right). Green dashed lines and yellow
shading indicate the automatically identified analysis window of maximal activation (1064-1964 ms). Bottom panels display
topographic projections of averaged feature importance within this window for Select, Observe, and their Difference. Warm
colors (red/orange) denote positive feature importance, cool colors (blue) negative importance. EEGNetv4 exhibits a focal
centro-parietal cluster centered on Pz, CPz, Cz, extending into POz, PO3, PO4, 01, O2, Iz. Spatial and temporal concentration are
near ceiling (Hypatial = -99 Hiemporal = -98) with negligible inter-trial variability (SD < .001), indicating stable and physiologically
consistent reliance on posterior SPN-related preparatory components. Grand averages are computed across N = 28 participants.
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Figure 8: LIME-based saliency maps for ShallowFBCSPNet. Top panels depict temporal heatmaps of LIME feature importance
for Select (Class 0, left) and Observe (Class 1, right) across 64 EEG channels and 750 time samples. The green dashed lines and
yellow shading mark the automatically selected analysis window (1872-2772 ms) in which overall importance peaks. Bottom
panels show the corresponding scalp topographies of averaged feature importance for Select, Observe, and their Difference.
ShallowFBCSPNet produces a posterior pattern highly similar to EEGNetv4, with peak importance over CP1-CP4, P1-P4, P5/P6,
PO3/PO4. Concentration metrics remain extremely high (Hgpatial = -99, Hiemporal = -99) and inter-trial dispersion is minimal
(SD < .001), suggesting that the model consistently emphasizes midline and adjacent parietal channels associated with slow
negative SPN activity. Grand averages are computed across N = 28 participants.
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Figure 9: LIME-based saliency maps for Deep4Net. Top panels show temporal LIME feature-importance heatmaps for Select
(Class 0, left) and Observe (Class 1, right) across 64 channels and 750 samples. The green dashed lines and yellow band
highlight the automatically determined analysis window (1504-2404 ms) of maximal activation. Bottom panels present
averaged topographic projections for Select, Observe, and their Difference over this window. Deep4Net exhibits the broadest
yet still physiologically coherent posterior distribution, with strongest weights over Pz, CPz, P3/P4, P5/P6 and additional
contributions from 01/02 and POz. Spatial and temporal concentration remain high (Hypatial = -98, Hiemporal = -98) and inter-trial
stability is excellent (SD < .001), indicating a consistent reliance on posterior SPN-like activity while allowing slightly more
distributed weighting than the shallower architectures. Grand averages are computed across N = 28 participants.
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Figure 10: LIME-based saliency maps for EEGResNet. The upper panels display temporal heatmaps of LIME feature importance
for Select (Class 0, left) and Observe (Class 1, right) across all channels and time samples. Green dashed lines and the yellow
region indicate the automatically identified analysis period (512-1412 ms), capturing the earliest robust preparatory effects
among the tested architectures. The lower panels show scalp maps of averaged feature importance for Select, Observe, and
their Difference within this window. EEGResNet exhibits the most sharply localized pattern, with maximal saliency along the
midline parietal axis CPz-Pz-POz and secondary contributions at P1/P2 and PO3/PO4. Both spatial and temporal concentration
approach unity (Hgpatial = -99, Hiemporal = -98) with negligible variability across trials (SD < .001), indicating strongly convergent
usage of SPN-related posterior features. Grand averages are computed across N = 28 participants.
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Figure 11: LIME-based saliency maps for EEGInceptionERP. Top panels illustrate temporal LIME feature-importance heatmaps
for Select (Class 0, left) and Observe (Class 1, right) over all channels and time samples. The green dashed lines and yellow
shading indicate the automatically selected analysis window (872-1772 ms), during which the model shows maximal sensitivity.
Bottom panels provide topographic projections of averaged feature importance for Select, Observe, and their Difference within
this window. EEGInceptionERP reveals a characteristic parietal-occipital ring with lateral extensions, with peak importance at
PO7/PO8, PO3/P0O4, P5/P6, 01/02, Iz. As with the other architectures, entropy-based concentration is extremely high (H > .99)
and explanation stability is strong (SD < .001). The model’s weighting of late SPN time points aligns with its high temporal
filter resolution, highlighting sustained preparatory activity over posterior scalp sites. Grand averages are computed across
N = 28 participants.
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