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Abstract
Generative AI (GenAI) systems are inherently non-deterministic,
producing varied outputs even for identical inputs. While this vari-
ability is central to their appeal, it challenges established HCI eval-
uation practices that typically assume consistent and predictable
system behavior. Designing controlled lab studies under such condi-
tions therefore remains a key methodological challenge. We present
a reflective multi-case analysis of four lab-based user studies with
GenAI-integrated prototypes, spanning conversational in-car as-
sistant systems and image generation tools for design workflows.
Through cross-case reflection and thematic analysis across all study
phases, we identify five methodological challenges and propose
eighteen practice-oriented recommendations, organized into five
guidelines. These challenges represent methodological constructs
that are either amplified, redefined, or newly introduced by GenAI’s
stochastic nature: (C1) reliance on familiar interaction patterns,
(C2) fidelity–control trade-offs, (C3) feedback and trust, (C4) gaps
in usability evaluation, and (C5) interpretive ambiguity between
interface and system issues. Our guidelines address these chal-
lenges through strategies such as reframing onboarding to help
participants manage unpredictability, extending evaluation with
constructs such as trust and intent alignment, and logging system
events, including hallucinations and latency, to support transpar-
ent analysis. This work contributes (1) a methodological reflection
on how GenAI’s stochastic nature unsettles lab-based HCI eval-
uation and (2) eighteen recommendations that help researchers
design more transparent, robust, and comparable studies of GenAI
systems in controlled settings.
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1 Introduction
Generative AI (GenAI) technologies are increasingly integrated
into interactive systems across domains—from productivity tools
to creative applications—by generating diverse forms of content
such as text, images, and voice [1, 32, 55]. As these systems become
more common in everyday contexts, evaluating their usability and
user experience has become an important topic in HCI. However,
GenAI also introduces challenges for established evaluation prac-
tices, particularly in controlled lab studies, which are among the
core methods in HCI research [28, 49, 68].

Unlike rule-based systems, such as traditional chatbots or in-
car voice assistants, which produce fixed responses based on pre-
defined commands, decision trees, or state machines [56, 59, 64],
GenAI models generate open-ended and context-dependent outputs
that can differ with each interaction [20, 36, 45, 46, 57, 75]. This
non-determinism, while enabling new forms of generative interac-
tion, also disrupts key methodological assumptions that underlie
lab-based evaluation, such as control, consistency, and comparabil-
ity [31, 44]. Without adapted approaches, researchers risk drawing
misleading conclusions about usability, trust, or user behavior when
stochastic system behavior is mistaken for interface design flaws.
We do not claim that these challenges are unique to GenAI. Similar
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challenges can arise when evaluating other adaptive or intelligent
systems [65, 67]. However, in generative systems, where output
variability tends to be higher, these challenges are amplified and
reframed, and additional challenges can emerge. Designing studies
that remain transparent, robust, and comparable under such sto-
chastic conditions is thus an important step toward more reliable
GenAI evaluation.

This unpredictability affects all stages of user studies, from task
definition and prototype development to data collection and inter-
pretation, yet how to plan and conduct such studies remains under-
explored. Numerous GenAI studies focus on system performance or
user-facing outcomes [30, 40, 55, 70, 74], while the methodological
decisions and trade-offs behind evaluation design are rarely dis-
cussed. Some acknowledge issues such as hallucinations, shifting
output styles, or novelty effects that influence trust and user expe-
rience [23, 73], yet these aspects are often mentioned only as study
limitations rather than systematically examined through internal
materials and reflections. Making such methodological reasoning
explicit can help researchers anticipate challenges and design more
rigorous evaluations of GenAI systems in controlled settings.

To address these issues, we conducted a reflective multi-case
study of four controlled lab-based user studies involving GenAI-
integrated prototypes. The cases span two domains—LLM-based
conversational in-car assistants and GenAI image tools for pro-
fessional design workflows—and vary in fidelity, modality, and
participant groups. We adopted a multi-case approach because
methodological challenges manifest differently across systems and
study designs, and a single case would not capture this diversity
or reveal recurring patterns [18]. Our goal was not to report user-
facing outcomes such as task performance or satisfaction measures,
but to analyze the methodological decisions, adaptations, and ten-
sions that emerged throughout the research process. Drawing on
study materials, researcher notes, and team discussions, we re-
flected on how GenAI’s stochastic nature shaped study planning,
prototyping, data collection, and analysis. Our work addresses two
research questions:

RQ1 What recurring methodological challenges arise when evalu-
ating GenAI systems in controlled lab settings?

RQ2 How can these challenges be addressed in the design and
execution of such studies?

Through cross-case reflection, affinity diagramming, and induc-
tive thematic analysis [6], we identified fivemethodological chal-
lenges (C1–C5) that complicate established HCI evaluation prac-
tices. These challenges represent methodological constructs that
are either amplified, redefined, or newly introduced by the
generative and non-deterministic nature of GenAI systems: (C1)
amplified reliance on familiar interaction patterns, (C2) amplified
trade-offs between fidelity and experimental control, (C3) redefined
feedback loops and user trust, (C4) new methodological gaps in
usability evaluation, and (C5) amplified interpretive ambiguity be-
tween interface and system behavior. Building on these findings, we
propose five methodological guidelines (G1–G5), each linked to
one of the challenges, and eighteen practice-oriented recommenda-
tions that offer actionable strategies for designing, conducting, and
analyzing GenAI user studies. The guidelines include preparing
participants for unpredictable system behavior, aligning prototype

fidelity to study goals, improving feedback interpretability and
user trust, adapting evaluation strategies to capture GenAI-specific
experiences, and building flexibility into study design and analysis.

This paper contributes (1) a methodological reflection based on
four GenAI-integrated lab studies that reveal how stochastic model
behavior challenges established evaluation practices, and (2) eigh-
teen concrete recommendations, structured under five guidelines,
to support the planning and execution of GenAI user studies in
controlled research settings.

2 Related Work
User studies are a foundational method in HCI for evaluating inter-
active systems [34, 36]. By typically combining quantitative mea-
sures (e.g., surveys, task logs) with qualitative feedback data, user
studies help assess usability, user experience, and task performance
across diverse interface types [21, 45, 53]. Traditional evaluations
often rely on controlled lab experiments, measuring completion
time, error rates, or subjective satisfaction, and are well-suited to
systems with well-defined tasks and stable behavior [21, 34, 45].

2.1 Methodological Shifts in HCI Evaluation
As interactive systems become more adaptive, open-ended, and
embedded in dynamic contexts, conventional evaluation methods
such as usability testing and short-term lab studies often prove in-
sufficient. Poppe et al. [43] emphasize that systems involving novel
sensing technologies and shifting user/system initiative require lon-
gitudinal observations and context-sensitive evaluation. Similarly,
Greenberg et al. [21] argue that standardized usability testing may
hinder innovation or overlook the critical experiential dimensions,
especially in systems supporting exploration, creativity, or collabo-
ration. Brdnik et al. [9], in a review of IUI papers from 2012 to 2022,
found that many evaluations still rely on conventional experiments
and questionnaires, with limited attention to metrics suited for sys-
tem adaptivity or the dynamics of human-AI co-adaption. Similar
limitations have been observed in newer interaction paradigms
such as voice interfaces, AR/VR, and IoT [12].

In response, the HCI community has adopted a range of comple-
mentary methods, including in-the-wild studies [51], longitudinal
deployments [27], Wizard-of-Oz studies [29], simulation and model-
ing approaches [39], and more interpretive, mixed-method designs
that combine usage data with reflective user feedback [14]. These
approaches are often applied to systems that are complex, adaptive,
or open-ended, or that are embedded in real-world settings where
traditional lab evaluations may be insufficient.

The information visualization community provides a documented
and explicit example of methodological evolution in response to
similar challenges. Visualization tools are often used for exploratory
tasks like analyzing large datasets or generating insights where no
single correct answer or predefined success criterion exists [33, 42].
In such contexts, traditional metrics like task completion time and
error rates may misrepresent how users interact or derive value
from the system over time. To address these challenges, the BE-
LIV (Beyond Time and Errors) workshop series [3]1 was estab-
lished to promote evaluation approaches designed for the unique

1https://beliv-workshop.github.io/

https://beliv-workshop.github.io/
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challenges faced by visualization systems, emphasizing user en-
gagement, exploration, and sense making beyond traditional per-
formance metrics. Building on this foundation, researchers have
proposed structured evaluation frameworks. Lam et al. [33] intro-
duced a taxonomy of seven evaluation scenarios to guide method
selection based on system type and research goal. Munzner’s nested
model [38] defines multiple design levels, such as data abstraction,
visual encoding, interaction techniques, and domain tasks, clari-
fying what is being evaluated and how. Sedlmair et al. [54] reflect
on the practical challenges of real-world design studies, emphasiz-
ing the “messiness” and need for context-specific adaptation when
evaluating visualization systems outside controlled lab settings.
Together, these methodological considerations highlight challenges
that arise when evaluating complex, adaptive, or user-driven sys-
tems in HCI [17, 54]. GenAI shares similar characteristics: its out-
puts are inherently variable and context-dependent, making them
difficult to evaluate using fixed metrics or predefined task goals.

Such methodological shifts have also emerged during periods of
disruption or modality-specific innovation. For example, Schmidt
et al. [53] explored remote and out-of-the-lab evaluation strategies
in response to pandemic-related constraints, proposing alterna-
tives to in-person testing such as browser-based prototypes and
the reuse of existing datasets. Similarly, new interaction modalities
have prompted adaptations in evaluation practice. Voice user in-
terfaces (VUIs), for instance, prompted new methods focused on
conversational timing, speech clarity, and context-aware interac-
tion [30]. Tools such as HEUROBOX were developed to identify
voice-specific usability issues [19], and standard instruments like
the System Usability Scale (SUS) were adapted to assess qualities
such as naturalness, politeness, and conversational flow [24]. These
efforts reflect a broader push toward inclusive and context-sensitive
evaluation strategies for emerging interaction paradigms [61].

Despite this progress, limited attention has been paid to the
methodological implications of evaluating non-deterministic GenAI
systems in controlled lab settings. Our work addresses this gap by
reflecting on researcher decisions, trade-offs, and adaptations in
the context of user studies involving GenAI.

2.2 Evaluating GenAI Systems in HCI
GenAI systems, including LLMs and image generators, introduce
distinct methodological challenges for HCI evaluation. Unlike de-
terministic systems, GenAI tools are inherently variable, producing
different outputs for the same input prompt, even under similar
conditions [10, 55, 58]. This variability complicates evaluation in
multiple ways. Traditional metrics, such as task completion time, ac-
curacy, and error rates, rely on consistent system behavior and clear
success criteria; yet, many GenAI use cases—including creative gen-
eration, idea exploration, and open-ended problem solving—lack a
single correct outcome. Moreover, responses may vary in quality,
structure, length, and completeness, making comparisons across
participants difficult. GenAI systems are also known to produce hal-
lucinations, that is, outputs that appear plausible but are factually
incorrect. This can undermine output-based measures of reliability
or satisfaction, particularly when users initially trust the response.

Prior work in HCI and explainable AI (XAI) has explored user
study methodologies for evaluating AI systems. For instance, Rong

et al. [52] review how XAI research primarily focuses on interpret-
ing decision boundaries and building user trust in deterministic
systems, often centered on decision-support tools or classifiers
with predictable behaviors. In contrast, GenAI systems produce
open-ended, multi-modal, and variable outputs, introducing un-
predictability and interpretive ambiguity that are not central in
XAI. Interactions with GenAI systems are typically iterative and in-
volve a co-construction of meaning between user and system, with
user expectations and satisfaction shaped by subjective, context-
dependent factors. Together, these differences present challenges
that call for rethinking user study design in HCI.

Existing user studies investigating GenAI systems also highlight
several distinct challenges. While GenAI systems excel at generat-
ing general content, they often struggle with domain-specific under-
standing and fine-grained detail. As a result, outputs tend to bemore
generalized, lacking the depth and expertise required in specific
fields [23, 35, 63, 70]. Prior work further shows that participants’
mental models of and skepticism towards GenAI frequently shape
their responses in user studies. Participants often draw on their
prior experiences with GenAI—both positive and negative—when
forming opinions during studies. A recurring concern is GenAI’s
tendency to produce seemingly plausible but factually incorrect
content [23, 70]. In addition, reliance on AI can introduce cogni-
tive biases, such as confirmation bias or the uncritical acceptance
of agreeable responses [23, 72, 73]. Interviews have also reported
novelty effects associated with so-called “advanced” AI tools, in-
troducing another source of bias. Despite recognizing these issues,
many studies acknowledge them only as limitations and fall short
of proposing comprehensive methodological responses. To address
these challenges, researchers have employed alternative approaches
in GenAI studies. One common strategy is to use pre-generated
outputs to control variability and ensure consistency. Other studies
adopt Wizard of Oz methodologies, in which human facilitators
simulate GenAI capabilities in real-time. However, this approach
introduces its own limitations, such as delays in response and gaps
in domain expertise [47]. Overall, most prior work emphasizes
real-world usage scenarios and treats unpredictability and non-
determinism primarily as limitations, rather than examining their
implications for lab-based evaluation of generative systems.

BeyondGenAI-specificwork, our contribution builds on a broader
body of HCI research examining how evaluationmethods need to be
adapted for systems with uncertain, opaque, or partially simulated
behavior. Wizard-of-Oz studies have long highlighted trade-offs
between experimental control, realism, and interpretability, as well
as challenges of attribution when system behavior is mediated
by human or hybrid components [15, 48, 60]. More recent work
has extended these concerns to machine learning (ML)–enabled
systems, demonstrating that realistically simulating ML errors in
Wizard-of-Oz studies is itself methodologically challenging and has
consequential effects on user experience evaluation [25]. Addition-
ally, critiques of usability evaluation methods argue against viewing
them as “fixed recipes,” urging the adaptation of methodological
resources to align with specific system properties and research
goals [69]. Building on these perspectives, we present guidelines as
modular methodological resources for designing and interpreting
lab-based studies of GenAI systems.
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3 Methodology: A Multi-Case Study with
Reflection and Thematic Analysis

We adopted a multi-case study approach supported by reflective
and inductive thematic analysis to examine methodological chal-
lenges in evaluating GenAI systems through lab-based user studies.
This approach enabled us to capture methodological challenges
across varied GenAI systems and study designs while reflecting
on our research decisions. A multi-case perspective supported the
identification of both recurring patterns and context-specific nu-
ances across studies [22]. By combining Eisenhardt’s systematic
multi-case framework [18] with affinity diagramming [4] for
initial structuring and inductive thematic analysis [7, 8], we
moved from concrete study observations to broader methodological
insights. The resulting five challenges (C1–C5) represent recur-
ringmethodological tensions in lab-based GenAI evaluation and
form the foundation for the guidelines presented in Section 5. In
summary, this analytic process combined affinity diagramming for
initial structuring with thematic analysis to synthesize cross-case
methodological challenges.

3.1 Case Selection and Context
We analyzed four user studies conducted between January 2024
and September 2025, covering both conversational and visual GenAI
systems. We selected these cases to support cross-case comparison,
following established guidance for multi-case research [18], rather
than to maximize the number of challenges identified. Accordingly,
our inclusion criteria were guided by methodological considera-
tions and practical access constraints. We included only lab-based
user studies that we conducted ourselves, involved direct user inter-
action with a GenAI system, and empirically evaluated that inter-
action with participants. Because all authors were involved in the
studies, we had detailed insight into design rationale, trade-offs, and
study-planning decisions, supporting retrospective methodological
analysis. The cases varied in system type, participant group, and
prototype fidelity—from in-car voice assistants to design-oriented
image generation tools—providing sufficient diversity to examine re-
curring methodological challenges across contexts. This scale aligns
with established guidance for multi-case research, which suggests
that a small number of heterogeneous cases can provide depth and
analytical comparability [18, 22]. As such, the resulting challenges
should be understood as illustrative rather than exhaustive, high-
lighting recurring methodological tensions rather than providing
a complete landscape of GenAI evaluation issues. We approached
reflection as a method for methodological inquiry rather than sub-
jective introspection, triangulating researcher memos, study logs,
and artifacts to ensure transparency. Each case featured different
combinations of GenAI models, interaction modalities, user goals,
and study designs. This diversity offered a comparative basis for
identifying recurring methodological tensions across distinct study
contexts. An overview of the cases is provided in Table 1, with
detailed descriptions in Section A.2.

3.2 Data Collection
We collected a range of internal research materials, including study
plans, interview guides, prototype specifications, and observational
notes from user sessions. Researcher reflections and memos written

during and after each study, together with meeting summaries and
study logs, were used to capture the reasoning behind method-
ological decisions. These materials enabled us to reconstruct both
the practical procedures and the rationale behind specific design
choices. Each researcher independently identified methodological
issues from the studies they primarily planned and conducted. All
observations and notes were then consolidated into a shared Figma
workspace, where we collaboratively externalized, organized, and
discussed emerging methodological patterns. To support collabora-
tive organization of the collected materials, we employed affinity
mapping techniques [4] to iteratively group, split, and reorganize
methodological observations through team discussion.

3.3 Analysis
Our analysis followed an inductive thematic analysis applied across
the four lab-based studies. Rather than starting from predefined
categories, we iteratively developed themes grounded in the col-
lected data. The analysis builds on materials generated through
an initial affinity diagramming step, which supported the organi-
zation and externalization of methodological observations before
formal thematic analysis. This process unfolded in three stages:
(1) organizing methodological observations within each case, (2)
collaboratively clustering and comparing patterns across cases, and
(3) synthesizing broader methodological challenges emerging from
the analysis [18].

Step 1: Organizing Case Observations. In the first stage, we or-
ganized all methodological observations and reflections according
to study phases (e.g., research planning, prototyping, participant
interaction, data collection, and analysis), supported by affinity
diagramming. This phase-based coding allowed us to identify when
and where methodological challenges occurred within the study
process and supported early visualization of emerging patterns
across projects. Section A.1 shows this early phase-based cluster-
ing.

Step 2: Collaborative Coding and Clustering. Next, building on
this initial organization, we conducted collaborative coding and
clustering to identify recurring methodological patterns. Using
the materials generated through affinity diagramming, the authors
iteratively compared and merged related analytic codes while dis-
cussing conceptual relationships across studies. This process moved
from detailed, case-specific observations (codes) to conceptual clus-
ters (subthemes) that captured methodological issues recurring
across multiple contexts.

Step 3: Thematic Synthesis. Finally, through thematic synthe-
sis, we abstracted these conceptual clusters into five higher-level
methodological challenges (C1–C5). This synthesis combined
descriptive codingwith reflective interpretation, focusing onmethod-
ological tensions we encountered repeatedly, such as participant
familiarity, prototype fidelity, interpretability of feedback, metric
validity, and confounding system factors. Figure 1 shows this pro-
gression from initial analytic codes (specific observations) to fo-
cused subthemes (conceptually related methodological issues) and
five higher-order themes (challenges).
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Table 1: Summary of the four lab-based studies highlighting study context, user groups, primary interaction modalities, adopted
GenAI models, prototype fidelity, evaluation methods, and study timeframe.

Study Aspect Case A Case B Case C Case D

Study Overview A multimodal conversational in-
car assistant powered by an LLM,
exploring interactions across dif-
ferent driving-related use cases.

A multimodal conversational
LLM-based in-car assistant with
integrated GUI interaction, focus-
ing on users’ references to visual
elements.

A paper-based prototype of an
early-stage GenAI image gener-
ation tool, targeting professional
designers’ input strategies.

A fully functional GenAI image
generation tool deployed in pro-
fessional design practice to sup-
port interactive workflows.

User Groups Drivers Drivers and passengers Professional designers Professional designers and design
students

Interaction
Modalities

Voice and GUI interaction (touch-
screen)

Voice and GUI interaction (touch-
screen)

Text input, scribbling, and hand-
written annotations

Text input and visual inputs (scrib-
bling and annotations), or combi-
nations of both

AI Models Used GPT-4o GPT-4o DALL·E 2 DALL·E 3, GPT-image-1, Flux.1
Kontext Pro, GPT-4o

Prototype Type and
Fidelity

Fully functional Fully functional Paper-based prototype Fully functional

Evaluation Methods Semi-structured interviews and
usability surveys (Likert scale)

Semi-structured interviews and
usability surveys (Likert scale)

Interviews and think-aloud meth-
ods

Comparative study, interviews,
and custom surveys (Likert scale)

Study Timeframe January 2024–April 2024 March 2024–August 2024 August 2024–January 2025 March 2025–September 2025

4 Results: Challenges Identified Across Case
Studies

Our inductive thematic analysis of the four lab-based GenAI studies
revealed five methodological challenges (C1–C5) that compli-
cate conventional HCI evaluation practices. These challenges reflect
methodological constructs that are either amplified, redefined, or
newly introduced by the generative and non-deterministic nature
of GenAI systems. They emerged through iterative comparison of
authors’ reflections, study artifacts, and participant observations,
capturing tensions spanning study planning, prototyping, user in-
teraction, evaluation, and interpretation. Together, they illustrate
how GenAI systems reshape established assumptions about what
can be controlled, measured, and meaningfully interpreted in lab
research. Figure 2 provides an overview of the core challenges and
the corresponding methodological recommendations. In the fol-
lowing, we use output variability to describe the degree to which
a system may produce different outputs for the same input under
similar conditions—it is stochastic, but not arbitrary or completely
unpredictable.

4.1 C1. GenAI amplifies user reliance on
familiar interaction patterns

Users in HCI studies often default to familiar interaction strategies
when introduced to novel systems. In GenAI contexts, this tendency
becomes more pronounced, not merely due to habit or bias, but
because the system’s stochastic feedback prevents stable learning.
Without predictable input–output mappings—as found in conven-
tional interfaces that follow rule-based or deterministic logic—users
struggle to infer how the system interprets their actions and instead
rely on previously learned strategies, such as favoring text over
visual input in GenAI image tools or conventional phrasing in voice
commands. Across our GenAI cases, this reliance was reinforced
by inconsistent responsiveness: participants preferred input modes

that seemed more legible to the system, even when novel modal-
ities were available. For example, participants in Cases A and B
often relied on their expectations of how in-car voice assistants
typically behave, referring to GUI elements as if the systems fol-
lowed deterministic interaction rules. Similarly, in Cases C and
D, some designers preferred text prompts over sketches or annota-
tions, citing prior training and confidence in text-based interaction.
This reliance limited participants’ exploration of new affordances
and, consequently, the study’s ability to evaluate novel interaction
designs.

Takeaway: GenAI’s unpredictability amplifies users’ reliance
on familiar input modes, reducing their willingness to explore new
affordances and constraining what lab studies can reveal about
interaction designs.

4.2 C2. Trade-offs between fidelity and control
are amplified by GenAI’s output variability

Interactive system studies often aim to balance experimental con-
trolwith ecological realism—a long-standing methodological ten-
sion in HCI. In GenAI evaluations, however, this balance becomes
especially difficult because stochastic outputs introduce additional,
uncontrollable variability on top of existing system behavior. Low-
fidelity setups (e.g., scripted responses or Wizard-of-Oz methods)
can increase consistency but may limit the generative qualities that
characterize GenAI, while high-fidelity prototypes capture more
authentic behavior but can introduce noise and unpredictability
that complicate study outcomes. In Case D, low-fidelity prototypes
increased consistency but limited opportunities for exploration.
Conversely, in Cases A, B, and D, fully functional prototypes
enabled genuine generative interactions yet led to latency and un-
expected responses. Participants expressed confusion when outputs
deviated from expectations, despite prior briefings about system
limitations.

Takeaway: This challenge extends a familiar HCI problem—
balancing fidelity and control—but GenAI’s higher degree of output
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Figure 1: Visualization of our inductive thematic coding process from initial analytic codes (light gray boxes) to subthemes
(white boxes) and five higher-order themes (C1–C5). Each column represents one methodological challenge that emerged
through iterative comparison and clustering across studies. Detailed documentation of affinity notes, analytic codes, subthemes,
themes, and methodological reflections is provided in the supplementary material.

variability amplifies this impact, making design choices method-
ological in nature, as they directly affect study reliability and deter-
mine which types of interactions can be meaningfully observed.

4.3 C3. Redefined feedback loops challenge user
trust in GenAI systems

In conventional interfaces, feedback mechanisms are typically de-
signed to be interpretable, enabling users to infer the relationship
between their input and the resulting output. GenAI systems compli-
cate this loop, as stochastic generation and opaque model behavior
make it unclear how inputs are processed or acknowledged. Across
our studies, participants frequently expressed doubt about whether
the system recognized or understood their input, especially when
using less familiar modalities (e.g., voice in the car study, scribbles
in the design study). In Case B, conversational hallucinations led
participants to question whether miscommunication stemmed from
their phrasing or from the model’s unpredictable generation of ir-
relevant responses. In Case D, scribble-based prompts sometimes
yielded mismatched or irrelevant images, leading participants to
wonder whether the system had misunderstood their visual input
or failed to align it with the intended concept. In contrast, text
prompts provided more consistent and traceable responses, which
participants perceived as more reliable.

Takeaway: In GenAI systems, feedback is not simply less reliable
but redefined. Users may hesitate to explore unfamiliar modalities
not because of interface flaws, but because feedback can be unstable
or ambiguous, which can disrupt trust and engagement during the
study itself. This instability can limit the extent to which evaluators
can reliably infer from observed interaction behavior.

4.4 C4. GenAI introduces new methodological
gaps in conventional usability evaluation

Standard usability measures such as the System Usability Scale
(SUS) or the User Experience Questionnaire (UEQ) were developed
under the assumption of systems that produce relatively consis-
tent and reproducible responses. These instruments assume clear
input–output relationships and stable performance, allowing nu-
merical scores to reflect interface usability. GenAI systems violate
these assumptions: stochastic and context-dependent outputs mean
that user ratings often capture variability in system behavior rather
than interface design quality. In Case B, SUS ratings were fre-
quently influenced by factors such as hallucinations, latency, or
unexpected output variation rather than interface design, as in-
dicated by follow-up interviews. Similarly, in Case D, low UEQ
scores for scribble-based tasks were sometimes attributed to confus-
ing or incoherent outputs rather than to interaction design flaws.
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Such findings suggest that established usability metrics may not
reliably separate interface-related issues from variability arising
from generative system behavior. To support a valid interpreta-
tion, qualitative observations and mixed methods (e.g., interviews,
think-aloud protocols) were essential for contextualizing numerical
results.

Takeaway:GenAI creates a newmethodological gap in usabil-
ity evaluation. Traditional metrics assume consistency and deter-
minism, yet user frustration often arises from model unpredictabil-
ity rather than interface design, highlighting the need for new or
hybrid evaluation approaches that account for stochastic behavior.

4.5 C5. GenAI amplifies interpretive ambiguity
between interface and system issues

In conventional systems, usability breakdowns can often be traced
to specific causes, such as interface design issues or users’ inter-
action mistakes. In GenAI studies, however, overlapping factors—
interface affordances, user strategies, and model behavior—make
it challenging to determine the origin of observed problems. Un-
like the interaction-level uncertainty described in Section 4.3, this
challenge instead arises during post-hoc interpretation, when re-
searchers attempt to attribute causes to observed outcomes. Across
our cases, participant confusion or task failures often stemmed from
intertwined system- and interface-level factors, blurring evaluative
judgment. This ambiguity is further amplified when variability in
system output makes it harder to attribute observed behavior to in-
terface design decisions rather than underlying model behavior. In
Case D, irrelevant image outputs from scribbles could signal either
poor interface affordances or stochastic model behavior. Similarly,
in Case B, hallucinated or delayed responses disrupted task flow,
making it unclear whether confusion arose from design limitations
or the model’s unpredictable processing. Without precise system
logging or detailed observational notes marking critical events
(which tend to occur more frequently in GenAI systems than in
conventional ones), tracing the source of such breakdowns and
interpreting their methodological implications reliably becomes
more difficult.

Takeaway: GenAI’s unpredictability amplifies existing inter-
pretive challenges in usability evaluation. Overlapping effects from
user behavior, interface design, and model responses blur causal
boundaries, making it harder to determine whether observed issues
reflect design flaws or generative variability.

5 Guidelines for Designing and Evaluating
GenAI Systems in Controlled Studies

Building on the five methodological challenges (C1–C5) identified
in controlled lab studies, we developedfivemethodological guide-
lines (G1–G5), each accompanied by a set of practice-oriented
recommendations. While the challenges highlight how GenAI
complicates established evaluation practices, the guidelines pro-
vide actionable strategies for designing, conducting, and analyzing
GenAI lab studies more effectively. Each guideline responds to a
core methodological issue, including preparing participants for sto-
chastic systems (G1), balancing control and fidelity (G2), improving
feedback interpretability (G3), adapting usability metrics (G4), and
strengthening post-hoc interpretation (G5). They aim to help HCI

and UX researchers anticipate, document, and mitigate the unique
methodological tensions introduced by GenAI’s non-deterministic
behavior. Table 2 summarizes the five guidelines and their corre-
sponding recommendations, while Figure 2 illustrates how these
guidelines relate to the five challenges across study phases.

5.1 G1. Prepare Participants for
Non-Deterministic System Behavior

Participants often approachGenAI systemswith expectations shaped
by prior experiences with deterministic interfaces (e.g., voice assis-
tants or design tools). When outputs vary across identical inputs,
these expectations can lead to confusion, frustration, or misattribu-
tion of errors to the interface. Preparing participants for stochastic
behavior helps them interpret variability as an inherent property
of the system rather than as a failure. The four recommendations
under G1 address participant preparation as a gradual process, start-
ing with shaping expectations during system introduction (R1.1),
accounting for prior experience (R1.2), guiding initial interactions
through structured onboarding (R1.3), and concluding with free
exploration in a low-pressure setting (R1.4).

R1.1 Frame the system around interaction possibilities. How a sys-
tem is introduced influences how participants approach it. Framing
it as “AI-powered” or referencing commercial tools (e.g., ChatGPT,
Midjourney) can narrow participants’ expectations and lead them
to rely on familiar input patterns even when other modalities are
available. To encourage broader exploration, present the system
in terms of its input possibilities, supported tasks, and limi-
tations rather than emphasizing its AI identity. In Case C and D,
where the systemwas introduced as an AI tool, users often defaulted
to text prompts despite having access to scribbles and annotations,
reflecting prior experience with text-based GenAI tools that partic-
ipants cited when reasoning about their interaction strategies. In
contrast, in Cases A and B, the systems were presented through
their task functions, and information about the underlying LLMs
was disclosed only after the study, which appeared to promote more
varied and open-ended interaction.

R1.2 Screen for prior interaction experience. Participants’ previous
exposure to specific input modalities can shape both their confi-
dence and their evaluation of usability. Without accounting for this,
it becomes difficult to distinguish genuine usability issues from
those arising from unfamiliarity (e.g., hesitation or confusion) or
over-familiarity (e.g., reluctance to explore alternative inputs).
We therefore recommend pre-screening participants for prior
experience with modalities such as in-car voice assistants, stylus
input, or prompt-based systems to help support more accurate
interpretation of observed behaviors. In Case B, the absence of
such screening meant that participants defaulted to typical home-
assistant commands when they were uncertain how to proceed.
In contrast, Case A recruited experienced in-car voice assistant
users, which enabled clearer differentiation between skill-based
challenges and system-related issues. Familiarity also shaped explo-
ration. In Cases C and D, participants with strong prior experience
using text-based GenAI tools often defaulted to text prompts, while
those without prior stylus experience struggled initially. Together,
these familiarity effects complicated attribution, making it difficult
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Table 2: Overview of the five methodological guidelines and their associated recommendations, showing how they address core
challenges in evaluating GenAI systems.

G# Guideline Key Recommendations

G1 Prepare participants for non-deterministic
system behavior (Participant readiness)

R1.1 Frame the system around interaction possibilities
R1.2 Screen for prior interaction experience
R1.3 Design contextual onboarding to promote exploration
R1.4 Offer a low-pressure trial phase before formal tasks

G2 Align prototype fidelity to study goals (Fidelity &
control)

R2.1 Choose prototype fidelity according to study objectives
R2.2Manage unpredictability through selective backend adjustments
R2.3 Prepare fallback strategies proactively to sustain study flow
R2.4 Document system behavior and contextual variables
R2.5 Design tasks that reflect GenAI’s exploratory nature

G3 Improve feedback interpretability and user trust
(Feedback & trust)

R3.1Make the system feedback loop interpretable across input and output
R3.2 Provide real-time input feedback for immediate transparency
R3.3 Use post-task debriefs to identify mismatches between user intent and system
behavior

G4 Adapt evaluation strategies to capture
GenAI-specific experiences (Evaluation strategies)

R4.1 Expand evaluation metrics to capture GenAI-specific constructs
R4.2 Pair standardized metrics with qualitative reflections

G5 Build flexibility into GenAI study design and
analysis (Researcher adaptation)

R5.1 Anticipate system issues through pilot testing and live monitoring
R5.2 Respond flexibly to system failures to preserve study continuity
R5.3 Label system limitations in logs to ensure transparent analysis

to determine whether performance issues stemmed from the input
method itself, habitual interaction patterns, or device unfamiliarity.

R1.3 Design contextual onboarding to encourage exploration. Even
when prior experience is taken into account, participants still re-
quire orientation to the specific interaction context of the study.
Structured onboarding tasks that mirror the main study activi-
ties help participants understand how to interact with the system
and adapt existing habits to new modalities. When onboarding
aligns with task goals—such as editing images or navigating maps—
participants are more willing to experiment with unfamiliar input
methods. In Case D, a warm-up task that incorporated text, scrib-
bles, and annotations closely mirrored the main study and helped
participants use a broader range of inputs later. By contrast, inCase
B, a scripted onboarding that focused on a generic voice example
did not sufficiently prepare participants to use the GUI-referencing
feature, leading them to rely on familiar command-style interac-
tions. Aligning onboarding more closely with actual study tasks can
therefore help participants bridge the gap between prior experience
and the intended interaction design, promoting richer exploration
and engagement.

R1.4 Offer a low-pressure trial phase before formal tasks. After
completing structured onboarding, participants often still need
space to explore new input methods without performance pres-
sure. A short exploratory trial phase before formal tasks allows
participants to internalize what they learned during onboarding
and to build confidence in how the system interprets their actions.
This phase can include unstructured interaction as well as light

demonstrations, such as showing how a scribble is recognized or
presenting example prompts. In Case B, participants who lacked
early opportunities for open-ended exploration worried about pro-
viding “incorrect” input, whereas in Case D, those who were able
to experiment freely beforehand became more confident using
scribbles and annotations during the main tasks. Providing a low-
pressure exploration phase helps participants translate structured
learning into flexible engagement, reducing anxiety and fostering
more authentic interaction with unfamiliar inputs.

5.2 G2. Align Prototype Fidelity to Study Goals
Balancing prototype fidelity with experimental control is a recur-
ring challenge in evaluating GenAI systems (see C2, Section 4.2).
High-fidelity prototypes enable authentic interactions but intro-
duce unpredictable outputs that compromise consistency, whereas
low-fidelity setups increase control but sacrifice the generative
qualities that define GenAI. This trade-off, therefore, becomes a
methodological choice rather than a purely technical one. The five
recommendations for G2 outline how to align fidelity with study
goals, address system variability, and maintain both experimental
rigor and ecological validity.

R2.1 Choose prototype fidelity according to study objectives. Pro-
totype fidelity should align with the main research goal, whether
to explore input preferences, observe adaptation to system behav-
ior, or evaluate output quality. In early-stage investigations that
focus on input exploration or interaction patterns, simplified or
non-functional prototypes help isolate user strategies. This avoids
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confounding effects such as latency or unpredictable output. In
Case C, a paper-based prototype was used to examine input choices
(text, scribbles, annotations) without system interference, enabling
clearer observation of interaction patterns. In contrast, in Case D,
a fully functional image generation prototype allowed researchers
to observe real-time adaptation but also revealed issues with la-
tency and output errors. Choosing fidelity with intention helps
ensure methodological coherence between research goals, study
conditions, and interpretive validity.

R2.2 Manage unpredictability through selective backend adjust-
ments. Functional prototypes are essential when studying how
users adapt to GenAI systems in realistic conditions, such as re-
fining prompts or responding to variable outputs. Although they
reduce experimental control, they reveal interaction patterns that
only emerge during live system use. To balance realism and re-
liability, researchers can manage unpredictability through selec-
tive adjustments to the backend, such as refining prompts, tuning
model parameters, or adding contextual guidance. In Case D, a
fully functional prototype supported real-time image generation
from text, scribbles, and annotations. To reduce excessive output
variability while preserving generative behavior, backend prompts
were constrained during closed-ended tasks to better align with
task goals, whereas fewer prompt constraints were applied during
open-ended phases to allow broader exploration. This setup enabled
observation of how participants refined their inputs in response to
varied outputs under different degrees of system control. InCase A,
backend adjustments to the voice assistant prompt (e.g., including
navigation examples) reduced hallucinations without diminishing
the system’s perceived authenticity. Balancing fidelity and control
through targeted technical adjustments helps researchers capture
GenAI-specific interaction dynamics while maintaining interpretive
validity across participants.

R2.3 Prepare fallback strategies proactively to sustain study flow.
Even with backend control, GenAI systems can fail to produce
coherent or timely outputs. Such disruptions can interrupt task
flow and frustrate participants, thereby reducing the reliability
of collected data. We therefore recommend designing fallback
strategies, such as pre-generated outputs, scripted alternatives, or
structured opportunities to re-prompt, to maintain task continu-
ity when system breakdowns occur. In Case D, participants were
allowed to re-prompt the system when image generation failed,
which helped them remain engaged and complete the task despite
interruptions. During analysis, the research team noted that prepar-
ing additional fallback materials, such as pre-generated images,
could further support continuity in similar studies. By contrast,
in Case B, the absence of fallback options forced participants to
restart interactions manually, leading to frustration and loss of fo-
cus. Overall, proactive fallback planning supports both data quality
and participant engagement, while documenting such events en-
ables richer post-study analysis of system breakdowns and recovery
strategies.

R2.4 Document system behavior and contextual variables. Because
GenAI systems can produce variable and unpredictable responses,
detailed documentation of system behavior is essential for credible
interpretation and replication. Logging prompts, outputs, latency,

and contextual variables allows researchers to understand how sys-
tem performance shapes participants’ experiences and to attribute
observed behaviors more accurately. In Case D, extensive event
logging and synchronized voice recordings enabled the research
team to trace each interaction and examine how users adapted to
system responses in real time. This comprehensive documentation
provided valuable insights during analysis and helped differenti-
ate between user behavior, interface design, and stochastic model
variation. Overall, thorough and transparent logging ensures that
GenAI evaluation remains interpretable and reproducible, enabling
researchers to distinguish between design-related issues and vari-
ability inherent to generative systems.

R2.5 Design tasks that reflect GenAI’s exploratory nature. Study
tasks should represent how users naturally engage with GenAI
systems through iteration, experimentation, and adaptation. Re-
stricting interaction to single attempts limits realism and prevents
observation of how participants refine their input in response to sys-
tem outputs. In Case D, participants frequently modified prompts
or sketches in response to system feedback but were constrained
by a study-imposed three-iteration limit, which shaped their inter-
action strategies. By contrast, Case B deliberately incorporated an
open-ended task that allowed participants to freely ask questions
to the in-car assistant, revealing more spontaneous exploration
patterns. Similarly, in Case A, participants interacted with the sys-
tem through loosely defined goals, such as setting destinations,
asking about car functions, or initiating casual conversation. To
support hesitant participants, the research team prepared a small
set of fallback ideas to help maintain engagement. Designing tasks
that support structured yet flexible iteration better captures the
exploratory nature of GenAI use and provides more ecologically
valid insights into user adaptation. Choosing appropriate prototype
fidelity, managing unpredictability transparently, and enabling iter-
ative exploration together help preserve both experimental rigor
and the authentic dynamics of generative interaction.

5.3 G3. Improve Feedback Interpretability and
User Trust

As identified in Challenge C3 (Section 4.3), GenAI systems rede-
fine feedback. Their responses are not always consistent or in-
terpretable, which can make it difficult for participants to form
stable mental models or trust the system’s behavior. Unlike con-
ventional interfaces, where the relationship between input and
output is transparent, GenAI feedback can be ambiguous, delayed,
or seemingly unrelated to the input. The three recommendations
under G3 address feedback interpretability as a continuous process:
clarifying how the feedback loop operates across input and out-
put (R3.1), providing real-time cues that confirm input recognition
across modalities (R3.2), and calibrating participant expectations
regarding feedback reliability (R3.3).

R3.1 Make system feedback loop interpretable across input and out-
put. Participants often struggle to understand whether their input
was received and why outputs vary, particularly when feedback
is delayed or inconsistent. Establishing transparency throughout
the feedback loop—by acknowledging inputs and contextualizing
output variation—can help participants build trust and maintain
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engagement. Providing clear indicators of input recognition (e.g.,
progress cues or acknowledgment tones), along with brief expla-
nations of why outputs differ, can support a more predictable in-
teraction flow. In Case B, latency and missing confirmation cues
led some participants to repeat voice commands, unsure whether
their input had been processed. In Case D, participants initially
viewed inconsistent image results as system errors; however, brief
clarifications that the model was intentionally exploring multiple
interpretations helped participants understand output variation as
a design feature rather than as an error. In Case A, subtle acknowl-
edgments of recognized speech and contextually adaptive phrasing
appeared to encourage participants to view response differences
as flexibility rather than faults. Across these cases, these examples
suggest that making feedback interpretable across both input and
output can reduce uncertainty and support user confidence.

R3.2 Provide real-time input feedback for immediate transparency.
Moment-to-moment uncertainty often arises when participants
are unsure whether the system has captured their input or is still
processing it. This hesitation can disrupt task flow, particularly in
modalities such as voice or sketches where input recognition is
less visible. We recommend implementing real-time feedback
cues that visualize how the system interprets user input, such as
speech-to-text transcriptions, highlighted drawings, or short textual
summaries of recognized content. Such cues can provide immediate
reassurance that input has been processed and allow participants
to stay focused on evaluating system behavior. In Cases A and B,
on-screen transcriptions improved transparency but did not fully
prevent repeated queries during latency delays, as users sometimes
remained unsure when the assistant was “listening.” In Case D, par-
ticipants tended to trust text prompts more than scribbles because
textual input offered visible acknowledgment, while sketches lacked
explicit confirmation. Providing timely, modality-specific feedback
can therefore help minimize hesitation and support smoother, more
confident engagement.

R3.3 Use post-task debriefs to identify mismatches between user
intent and system behavior. Not all misunderstandings between
participants and GenAI systems are visible during interaction. Par-
ticipants may misinterpret responses, question their own input, or
blame themselves without expressing this uncertainty in real-time.
Structured post-task debriefs can help identify and surface hidden
mismatches between user intent and system behavior. We recom-
mend a brief set of follow-up questions after each task, such as
“What did you expect the system to do?” or “What do you think
the system understood?” These reflections can reveal unspoken
confusion and help researchers interpret observed behaviors more
accurately. In Case D, participants sometimes attributed unex-
pected images to their “bad writing,” later explaining that they were
unsure whether the input had been recognized. Similarly, in Case
B, post-task interviews revealed uncertainty about whether spoken
inputs were understood when responses were delayed or off-topic.
Post-task debriefs thus provide important context for interpreting
user behavior beyond what is directly observable during the study.

5.4 G4. Adapt Evaluation Strategies to Capture
GenAI-Specific User Experiences

As discussed in Challenge C4 (Section 4.4), evaluating GenAI sys-
tems using traditional usability metrics, such as SUS or UEQ, can
lead to incomplete or potentially misleading conclusions. Because
GenAI outputs are variable and sometimes hallucinated, user frus-
tration or confusion may stem from model behavior rather than
from interface design alone. Conventional usability scales assume
consistent, deterministic system responses, which can limit their
ability to capture GenAI-specific phenomena such as unpredictabil-
ity, trust, or intent alignment. The two recommendations under G4
outline how to adapt evaluation strategies to these conditions: by
extending what is measured with GenAI-specific constructs (R4.1)
and by combining standardized metrics with qualitative reflections
for deeper interpretability (R4.2).

R4.1 Expand evaluation metrics to capture GenAI-specific con-
structs. Traditional usability scales quantify satisfaction and ef-
ficiency but often overlook experiential factors central to GenAI
interaction, such as trust, confidence, intent alignment, and comfort
with uncertainty. We therefore recommend integrating targeted
questions such as “Did you trust the system’s output?”, “How confi-
dent were you that your input was understood?”, or “Did the result
match your intent?” to better reflect these GenAI-specific aspects
of user experience. In Case B, post-task reflections indicated that
participants’ satisfaction was driven less by response accuracy and
more by how “understood” they felt by the voice assistant. Similarly,
in Case D, participants sometimes rated the same image output
differently depending on whether they believed the system had
captured their intent. Including items that capture perceived un-
derstanding or intent alignment (e.g., “I felt the system understood
what I meant”) can provide quantifiable yet context-specific data
that complements standard usability metrics.

R4.2 Pair standardized metrics with qualitative reflections. While
SUS and UEQ summarize user perceptions quantitatively, they
rarely reveal whether ratings primarily reflect interface design
or GenAI-specific variability. We recommend pairing standardized
scores with short, open-ended reflections after each task, comple-
mented by observation or think-aloud protocols. Follow-up prompts
such as “What did you expect to happen?” or “Was the response
what you intended?” can help clarify how participants interpreted
their experiences. InCases A and B, SUS and UEQ offered a general
overview of usability, but interviews suggested that lower scores
were often influenced by latency or hallucinations rather than by
input design. In Cases C and D, think-aloud sessions revealed
uncertainty about whether scribbles were interpreted, even in the
absence of formal metrics. Combining structured ratings with qual-
itative insights thus helps ensure that findings reflect both the
measurable and interpretive aspects of GenAI interactions.

5.5 G5. Build Flexibility into GenAI Study
Design and Analysis

As discussed in Challenge C5 (Section 4.5), distinguishing usability
issues from GenAI-specific limitations, such as hallucinations, la-
tency, or backend instability, proved difficult in our studies. These
ambiguities complicate analysis and call for flexible, reflexive study
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designs. Researchers, therefore, need to be prepared to adapt tasks,
logging, or analytic strategies in response to unexpected system be-
havior or participant confusion. The three recommendations under
G5 highlight how flexibility can be integrated throughout a study:
proactively monitoring system reliability (R5.1), maintaining task
flow during disruptions (R5.2), and labeling the system’s limitations
to support accurate interpretation (R5.3).

R5.1 Anticipate system issues through pilot testing and adapt during
live monitoring. GenAI systems can fail unpredictably, producing
long delays, repeated hallucinations, or instability that disrupts the
task flow. We recommend monitoring system behavior contin-
uously during both pilot testing and live sessions to help detect
issues early and enable timely adjustments. This can include log-
ging outputs in real-time and preparing adaptive responses, such
as prompt modifications or fallback content. In Case B, pilot feed-
back identified latency as a major issue, and iterative adjustments
helped reduce delays that might otherwise have been mistaken
for usability flaws. In Case D, pre-study testing revealed perfor-
mance differences between two image-generation models, and the
team alternated between the two models to maintain acceptable
responsiveness while preserving realistic interaction behavior. Con-
tinuous monitoring and real-time intervention can help ensure that
technical failures do not unduly distort user evaluation.

R5.2 Respond flexibly to system failures to preserve study continuity.
Unlike R2.3 (Section 5.2), which emphasizes proactively preparing
fallback strategies before a study to reduce unpredictability, this
recommendation focuses on reactive adaptation during data
collection. When GenAI systems fail or generate unusable outputs,
continuing the original task can frustrate participants and compro-
mise data quality. Researchers may therefore need to adjust tasks,
repeat inputs, or offer workarounds to sustain engagement and sup-
port meaningful data collection despite disruptions. We recommend
preparing alternative task paths, such as allowing retries, provid-
ing pre-generated outputs, or skipping tasks when failures persist,
as well as time-boxing activities to balance flexibility with session
duration. All in-session adaptations should be documented so they
can be considered during later analysis. In Case D, participants
could retry image generation up to three times; if failures persisted,
they were guided to skip the task. This approach helped maintain
flow and later prompted discussion about the potential value of
pre-generated examples for continuity. InCase B, participants were
allowed to retry tasks or restart voice input using the push-to-talk
button, providing a simple yet effective recovery mechanism. Such
reactive flexibility can prevent technical breakdowns from derailing
studies and help ensure that adaptive decisions are captured and
reflected during subsequent interpretation.

R5.3 Label system limitations in logs to ensure transparent analysis.
To interpret study results accurately, researchers need to separate
interface-related challenges from system-side issues. We recom-
mend systematically labeling known limitations, such as “latency
> 3s,” “output failures,” or “hallucination detected,” within session
logs. Such annotations help clarify when participant hesitation or
performance drops are attributable to system behavior rather than
interface design. In Case D, logging which model generated each
image helped differentiate latency-related pauses from genuine

interaction difficulties. In Case B, separating sessions with and
without hallucinations clarified which usability scores reflected
user experience versus technical artifacts. These annotations create
an “audit trail” for later analysis, supporting more reliable interpre-
tation and facilitating replication by other researchers. Labeling the
system’s limitations in this way can enhance analytic transparency
and strengthen confidence in the reported findings.

6 Discussion
Our findings highlight challenges and recommendations that illus-
trate how GenAI systems are reshaping controlled lab studies and
HCI evaluation. Below, we discuss how these shifts affect study
design, user trust, and evaluation metrics, and we reflect on how a
reflective multi-case approach helps surface emerging methodolog-
ical challenges.

6.1 How GenAI Evaluation Extends and
Reframes Prior HCI Evaluation

Our results extend long-standing HCI debates about fidelity, con-
trol, and trust. As in prior work on adaptive or novel-sensing
systems that require context-sensitive and longitudinal observa-
tion [27, 43, 50], GenAI variability disrupts the tight input–output
mappings assumed by many lab protocols. It also intensifies the
fidelity–control trade-offs familiar from Wizard-of-Oz and pro-
totyping research [29]. GenAI does not merely introduce non-
determinism that complicates study design; it can also generate
new challenges while amplifying and reframing existing ones.

Several tensions identified in our analysis—such as users re-
verting to familiar interaction strategies, difficulties interpreting
system behavior, and trade-offs between control and realism—have
also been discussed in evaluations of other adaptive or intelligent
systems, including speech recognition and recommendation sys-
tems [11, 13, 62]. Our contribution is to articulate how the high
degree of output variability in GenAI systems amplifies these ten-
sions by coupling probabilistic generation with feedback ambiguity.
For example, variability may support exploration in some contexts
while undermining trust in others, including through hallucina-
tions. We therefore frame these challenges as amplified or reframed
methodological concerns, or issues that emerge specifically in the
context of generative systems, rather than as entirely unprece-
dented problems. Challenges C1–C3 primarily stem from stochastic
outputs and the lack of clear input–output mappings. Unpredictable
feedback can discourage deviation from familiar strategies (C1) and
disrupt fidelity–control trade-offs (C2) and feedback loops (C3),
thereby undermining both user confidence and experimental con-
trol. Challenges C4–C5 arise from the opacity of system behavior
and the entanglement of model and interface effects, complicating
evaluation and prompting a reconsideration of how success and
usability are defined.

One could argue that non-determinism ultimately reflects train-
ing data and tunable randomness (e.g., temperature or sampling
strategies). However, we contend that this unpredictability is pre-
cisely what makes these systems worth studying: variability en-
ables open-ended dialogue, exploration of alternatives, and forms
of collaboration that deterministic systems cannot support. Rather
than suppressing variability, researchers should examine whether
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Figure 2: Methodological challenges (C1–C5) and corresponding guidelines (G1–G5) with all eighteen recommendations (R1.1–
R5.3) for evaluating GenAI systems in HCI lab studies. The figure illustrates where each recommendation primarily applies
across research phases, from planning and prototyping to data collection and analysis.

systems support exploration and recovery, and how users adapt
interaction patterns over multiple steps to reach their goals. In
considering new approaches to studying GenAI, we argue that
methodological transparency is critical. We examined our own
research process—including the decisions made, trade-offs encoun-
tered, and evolving strategies—and how these choices shaped study
procedures and outcomes. Decisions such as constraining inputs,
simulating outputs, or tolerating variability were not neutral in

their effects; they influenced what could be observed and how find-
ings were interpreted. We therefore recommend reflective case
comparisons as a useful way to surface methodological insights
for emerging technologies. Looking ahead, as models expand their
context windows and adopt more agentic behaviors, additional
challenges will likely require longitudinal and in-the-wild studies
to understand how trust, adaptation, and success criteria evolve
over time.
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6.2 Study Design Strategies for User Trust and
Confidence

Even when the underlying GenAI model is opaque, a well-designed
study can help foster transparency for participants. Across our case
studies, three strategies proved particularly effective. First, onboard-
ing that emphasized input possibilities rather than the system’s “AI”
identity encouraged exploration and reduced hesitation when try-
ing unfamiliar input methods. Second, during interaction, real-time
feedback cues—such as transcribed speech or visual confirmations
of recognized input—helped participants understand how their ac-
tions were interpreted and reassured them that their input had
been received. These strategies were especially important when
participants encountered unexpected outputs that stemmed not
from their input or interface design, but from the system’s gener-
ative behavior. Making this distinction explicit during the study
helped reduce confusion and provided a clearer basis for interpret-
ing participants’ responses. Finally, structured post-task reflection
questions revealed mismatches between participants’ intentions
and the system’s responses that were not apparent from interac-
tion logs alone. These strategies illustrate how transparency can
be purposefully designed into GenAI evaluations, helping partici-
pants navigate uncertainty while enabling researchers to interpret
behavior more reliably.

6.3 Rethinking What and HowWe Measure in
GenAI Evaluation

Conventional usability scales (e.g., SUS, UEQ) remain useful for
comparability, but in our GenAI studies, they often lacked expres-
siveness for the underlying issues that users encountered. Low
usability scores could result from interface design, unpredictable
outputs, hallucinations, or mismatches between user intentions and
system responses. Relying solely on these standard metrics may
therefore fail to capture the nuanced sources of user frustration and
can lead to misinterpretation. To address this limitation, we suggest
extending standard scales with GenAI-specific constructs such as
user trust, confidence, and intent alignment. Adding short probes
after each task (e.g., “What did you expect to happen?” or “How do
you think the system understood your input?”) helped contextual-
ize numerical ratings and revealed mismatches that were otherwise
invisible in logs or scale data. Our studies further showed that dif-
ferent methods illuminate different layers of interaction. Usability
ratings summarized perceptions of ease, efficiency, and satisfaction;
interviews explained participants’ reasoning behind those scores;
and observations highlighted challenges that emerged during real
interactions. While each method contributes a distinct perspective,
relying on a single approach can lead to blind spots. This aligns
with long-standing calls in HCI and the social sciences for method-
ological triangulation, in which multiple methods are combined to
compensate for individual limitations and build a more complete
picture of interaction [37, 66]. For GenAI evaluation, mixed-method
strategies, such as combining metrics with reflections or triangulat-
ing observation, can support more reliable interpretation and help
distinguish interface-related issues from GenAI-specific effects [71].

6.4 Limitations and Future Work
Our findings are derived from four short-term, lab-based studies
with specific prototypes and user groups. This scope allowed us to
identify recurring methodological challenges, but it constrains the
empirical generalizability of our findings and the techno-ecological
validity of our conclusions. Accordingly, our contribution should
be understood as methodological insights derived through cross-
case reasoning, rather than as claims that are empirically replicable
or statistically generalizable. Nonetheless, highlighting these pat-
terns within constrained settings offers a valuable starting point
for understanding how GenAI complicates established lab-based
evaluation practices. Additionally, GenAI systems and users’ men-
tal models evolve rapidly. Some challenges may diminish as model
capabilities improve or as users become more proficient with GenAI
tools. We did not study long-term adaptation, in-the-wild use, or a
broader range of application domains, all of which represent im-
portant directions for future work and motivate extending analyses
to a more diverse set of case studies. Such extensions may sur-
face additional challenges or complement those reported here. We
therefore do not aim to provide an exhaustive review but instead
report a reflective cross-case analysis grounded in an in-depth un-
derstanding of the research process. To make our analysis steps and
underlying reflections transparent, we provide the coding schema
and theme descriptions in the supplementary materials. While these
materials document how the analysis was conducted, reproducing
the cross-case analysis depends on access to a similarly structured
study process. For this reason, we encourage documenting method-
ological trade-offs and reflections in a comparable manner.

Future studies could explore several additional avenues. One
potential direction is to conduct comparative user studies of differ-
ent evaluation strategies for GenAI systems. Variables such as fall-
back strategies (retrying versus pre-generated outputs), onboarding
framings (AI-highlighted versus task-highlighted instructions), and
feedback cues (verbatim transcripts versus interpreted summaries)
may influence how participants develop trust, confidence, and input
strategies. Such comparisons can help clarify when particular study
designs lead to distinct user behaviors and refine best practices in
GenAI evaluation. Another direction is to explore GenAI not only
as a system under evaluation, but also as a research tool within
HCI studies. Recent work has examined the use of LLMs as simu-
lated participants [26] and as aids in qualitative analysis, such as
thematic analysis [16]. Other studies have compared how human
analysts classify qualitative data with how LLMs generate classifi-
cations and reasoning for the same material [2]. These efforts raise
additional methodological questions about validity, interpretation,
and researcher responsibility, suggesting that reflective evaluation
practices will remain important as GenAI becomes increasingly
embedded in the research process itself. Finally, we view our contri-
bution as an initial step rather than a definitive account. Additional
challenges and recommendations are likely to emerge as GenAI
systems become more prevalent in everyday contexts, underscoring
the need to revisit and refine evaluation practices over time.

7 Conclusion
In this work, we identified five recurring methodological challenges
(C1–C5) in evaluating GenAI systems in controlled lab settings
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through a reflective analysis of four case studies. These challenges
reveal how GenAI’s stochastic, non-deterministic behavior com-
plicates established assumptions in HCI evaluation. In doing so,
they expose tensions between control and realism, between de-
terministic expectations and probabilistic system behavior, and
between user interpretation and model variability. Building on
these insights, we proposed five methodological guidelines (G1–
G5) and eighteen practice-oriented recommendations to support
researchers in designing, conducting, and analyzing GenAI user
studies more effectively. These guidelines include preparing par-
ticipants for unpredictable behavior, aligning prototype fidelity
with study goals, improving feedback interpretability, adapting
evaluation metrics to account for stochasticity, and incorporating
flexibility and transparency into study design and analysis. Overall,
our work foregrounds the research process itself—its design choices,
trade-offs, and interpretive challenges—when studying generative
systems. Rather than offering a final framework, we aim to provide
a foundation for continued methodological reflection as GenAI
technologies become more integrated into everyday life. Contin-
ually revisiting and expanding these methodological discussions
will be essential for building reliable and transparent HCI research
on GenAI-integrated systems.
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A Appendix
A.1 Initial Stage of Analysis
The initial collaborative workspace was used in the first round of
analysis. In this phase, we brainstormed and collected methodologi-
cal observations from four user studies, organizing them according
to study phases (e.g., research planning, prototyping, data collection,
and analysis). This initial mapping served as an analytic scaffold,
helping us identify where and when methodological issues emerged
and supporting early sensemaking around recurring patterns (see
Figure 3).

A.2 Overview of Case Studies
This appendix provides an overview of the four lab-based user
studies analyzed in our multi-case reflection. Each case represents
a distinct evaluation context for GenAI systems, ranging from early
concept exploration to studies involving fully functional prototypes.
The studies vary in domain, prototype fidelity, and participant
group, collectively illustrating recurring methodological challenges
encountered when evaluating GenAI systems in controlled lab
settings.

A.2.1 Case Study A: An LLM-Based Conversational Car Assistant.

Study Objective. This study investigated how users interact with
an LLM-based conversational car assistant during various driving-
related tasks. We examined conversation flow (single-turn versus
multi-turn), language style (command-based versus natural lan-
guage), task completion, and recovery from system errors. Addition-
ally, we assessed distraction levels during interaction and overall
usability. We were particularly interested in how users responded
when the system could not handle certain requests that were not
yet implemented in the prototype.

Study Procedure. We recruited 30 participants for our study,
which was conducted in a standing vehicle with participants seated
in the driver’s seat. Participants were given structured tasks related
to driving and car controls, each followed by a post-task inter-
view and evaluation. The tasks included navigating to a destination
with a stop along the route, controlling the windows and lights
via speech, asking about car functionalities typically covered in
the car manual, and engaging in free conversation on a topic of
their choice. These tasks were introduced in a way that guided
participants while still allowing them as much freedom as possible,
including the option to go beyond the system’s limits. Addition-
ally, participants completed the Critical Tracking Task [41] on a
screen positioned in front of the car to simulate driving-equivalent
cognitive load for half of the task duration.

Data Collection andAnalysis. We collected qualitative data through
post-task interviews, as well as interviews conducted at the be-
ginning and end of each session. Quantitative measures included
the deviation in the Critical Tracking Task, feedback gathered us-
ing Likert-scale items from the UEQ, and system errors recorded
through observations made by the study team. Moreover, we logged
user utterances, system replies, and the number of conversational
turns.

A.2.2 Case Study B: An LLM-Based Conversational Navigation As-
sistant Referencing the Display.

Study Objective. In this case, we investigated user interaction
patterns in a multimodal LLM-based VUI within the automotive
navigation context. We used a system that integrates GPT-4’s mul-
timodal capabilities with screenshots of the car’s central display.
Participants could ask questions about visual elements on the map
or other GUI components shown on the central display. Using this
system in a stationary vehicle, we conducted a user study with
21 participants. Through structured tasks and post-task question-
naires, we analyzed how users verbally described visual elements,
including map features and interface icons, and assessed system
usability using the SUS. We created a taxonomy that categorizes
the linguistic structures participants used when referencing visual
elements through the VUI.

Study Procedure. All participants interacted with the multimodal
LLM-based system via speech to complete three tasks while seated
in the driver’s seat of a stationary vehicle. The three tasks varied
in goals and interaction complexity. The first involved searching
for charging stations within the navigation system. The second
required participants to reference a lake shown on the map. The
final task was an open exploration activity, where participants
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Figure 3: Overview of the initial collaborative workspace used during an early stage of analysis. Methodological observations
were externalized and provisionally grouped to support shared sensemaking and explore emerging patterns. These materials
were iteratively added, merged, and reorganized to explore potential subthemes and overarching patterns, informed by
principles of thematic analysis [6]. Challenge labels (C1–C5) were added to make the connection between early affinity notes
and the resulting challenges explicit.

could ask questions about the elements displayed on the interface.
This procedure allowed us to examine how users structured spatial
references across different interaction types.

Data Collection and Analysis. We collected transcripts of user–
LLM interactions along with the contextual images provided to
the model. Post-task interviews yielded both quantitative usability
assessments via the SUS questionnaire and qualitative insights
through semi-structured discussions. To analyze user behavior, we
identified all utterances containing spatial references and applied
thematic analysis [5], resulting in a taxonomy of reference types
and interaction patterns.

Key Differences from Case Study A. This case builds on the con-
versational in-car assistant studied in Case Study A by focusing on
how users reference visual elements in the GUI. This focus allowed
us to examine users’ referencing strategies and how successful ref-
erences affect usability. By narrowing the interaction context, this
study highlights challenges that arise specifically when conversa-
tional input is grounded in shared visual representations.

A.2.3 Case Study C: A Paper-Based Exploration of Visual Input
Methods for GenAI Image Tools.

Study Objectives. This study explored alternative interaction
methods for GenAI image tools, which are typically centered on
text prompts. To support more visual forms of input, we introduced
scribble- and annotation-based interaction techniques that allow
users to draw, handwrite, or annotate visual elements directly onto
images, aligning with common design practices.

Prototype Design and Development. We designed a hybrid input
interface combining text prompts with scribbles and annotations.
The front end was implemented using JavaScript and React and
connected to several GenAI backends (Stable Diffusion, DALL·E 2,
and GPT-4o). Early testing revealed latency and recognition er-
rors in freehand input, which hindered the isolation of interaction
behavior from system performance. We therefore adopted a paper-
based prototype to simulate these interactions, enabling controlled
evaluation of input strategies without interference from model
variability.

Study Procedure. A qualitative study was conducted with seven
professional designers. Each participant compared three input meth-
ods (text prompts, scribbles, and annotations) across six design tasks.
Five tasks focused on predefined refinement categories (adding
objects, increasing complexity, making global changes, adjusting
layout, and modifying texture), and one was open-ended. Partici-
pants used pen or keyboard input freely. A think-aloud protocol and
post-task interviews were used to capture reasoning and reflections.

Data Collection and Analysis. Qualitative data were collected
from three sources: think-aloud protocols, post-task interviews, and
user-generated artifacts (e.g., annotated sketches and text prompts).
Think-aloud sessions captured participants’ real-time prompting
strategies, while interviews provided retrospective reflections on
usability, preferences, and the perceived value of each input method.
No structured questionnaires or quantitative metrics (e.g., Likert
scales or task completion times) were used. Instead, the analysis was
grounded in inductive thematic analysis [6], focusing on patterns
in behavior, input preferences, and recurring challenges across
participants.



IUI ’26, March 23–26, 2026, Paphos, Cyprus Park et al.

A.2.4 Case Study D: A Functional Prototype User Study for a GenAI
Image Generation Tool.

Study Objectives. Building on the findings from the earlier paper-
based study (Case Study C), this follow-up study evaluated user
interactions with a fully functional prototype of the GenAI image
tool. While the previous study focused on input preferences in a
static, controlled setup, this study observed how designers inter-
acted with the system in real-time. The goal was to understand
how real-time generative feedback affected user strategies, tool
preferences, and iterative design behavior, as well as whether pre-
viously reported preferences for visual input methods persisted
under dynamic feedback conditions.

Study Procedure. This study expanded on the earlier paper-based
work by introducing an interactive system that generates images in
real time in response to user input. While Case Study C employed
a low-fidelity prototype to investigate preferences in a fully con-
trolled setting, Case Study D introduced a fully functional system
with real-time, generative output, which enabled observation of
how designers adapted their strategies dynamically to the system’s

stochastic behavior. Latency, error handling, and responsiveness—
factors abstracted away in the previous study—became key aspects
of this evaluation.

Data Collection and Analysis. Participants included professional
designers and design students who performed image refinement
and creation tasks using text, scribbles, and annotations as input
modalities.We collected usage logs, screen recordings, and post-task
interview data. Quantitative measures included input completion
times, the NASA-TLX, the UEQ, and a custom survey assessing
perceived intent alignment. Quantitative results were used descrip-
tively to contextualize the findings, while qualitative data were
analyzed to capture behavioral adaptation and iterative strategies
during live system interaction.

Key Differences from Case Study C. Compared to Case Study C,
this study examined real-time interaction with a fully functional
GenAI system rather than simulated input. This enabled observa-
tion of how live feedback shaped iteration, trust, and engagement,
offering insights into the usability and methodological implications
of evaluating functional GenAI image tools in controlled settings.
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