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Abstract 
Integrating physiological signals in Human-Computer Interaction 
research has significantly advanced our understanding of user ex-
periences and interactions. However, the interdisciplinary nature 
of this research presents numerous technical challenges. These 
include the lack of standardized protocols, unclear guidelines for 
data collection and preprocessing, and difficulties in pipeline man-
agement, reproducibility, and transparency. The purpose of this 
meet-up is to offer a lightweight opportunity for CHI attendees 
to connect around these issues, exchange experiences, share tools 
and workflows, and identify best practices. By fostering open ex-
change, we aim to improve the reliability of physiological data in 
HCI, promote open science, and build a sustainable community. Ul-
timately, our goal is to overcome technical barriers and strengthen 
the foundation for future research in physiological computing. 

CCS Concepts 
• Human-centered computing → Human computer interac-
tion (HCI). 
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1 Motivation and Meet-up Goal 
In Human-Computer Interaction (HCI), integrating physiological 
data into interactive systems is a growing focus for creating more 
intuitive, adaptive, and responsive experiences. Sensors measur-
ing heart rate, eye gaze, respiration, electrodermal activity, muscle 
tension, and brain activity provide objective insights into users’ 
physical and affective states [19]. These signals enable systems 
not only to adapt in real time to user needs but also to inform 
ergonomics and usability by revealing how people physically and 
cognitively engage with technology. By drawing on these measures, 
physiologically adaptive systems can promote natural interactions, 
improving both usability and user experience [4, 8, 9, 13]. With sen-
sor technologies becoming more practical and reliable, applications 
are rapidly expanding into real-world settings [2, 3]. 

Although researchers have explored innovative methods for 
integrating neural and physiological data into HCI, the field still 
lacks shared theoretical and methodological standards and best 
practices [6, 10, 20]. Recent community discussions have called for 
greater scientific rigor and highlighted significant gaps in theory 
and methodology [1, 12]. Addressing these issues is essential to 
improve the effective and reliable use of physiological signals in 
HCI and to guide the development of explainable adaptive systems 
that respect user privacy and ethical standards [17]. 

One of the main reasons for these difficulties lies in the steep 
interdisciplinary expertise required to work with physiological data. 
Advancing this field demands knowledge spanning physiology, sig-
nal acquisition, signal processing, machine learning, software engi-
neering, and HCI design [16], often leading to isolated efforts where 
methods, pipelines, and datasets are developed independently. This 
fragmentation, combined with the absence of shared standards, 
makes it difficult to reproduce results, build on prior work, or align 
on best practices [1, 15, 24]. 

Overcoming this fragmentation requires a collective effort, shared 
frameworks, and alignment on technical and methodological prac-
tices. This meet-up aims to provide a space for the HCI community 
to exchange experiences and begin aligning our shared best-practice 
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approaches. Doing so opens the opportunity for physiological com-
puting in HCI to mature into a reliable, objective complement to 
established evaluation methods. By providing a forum for experts 
as well as novices, this meet-up will provide an engaging and fo-
cused space for exchanging ideas, offering solutions to common 
challenges, and sharing questions and answers. To structure this 
discussion, we highlight four research goals: 

• Developing methods for collecting and recording high-quality 
physiological data in HCI contexts 

• Establishing guidelines and best practices for preprocessing 
and pipeline management 

• Ensuring reproducibility and transparency across physiolog-
ical studies 

• Building sustainable infrastructures for open and collabora-
tive research 

Building on the discussions with participants, we will share the 
outcomes through blog posts and articles in ACM Interactions. In 
addition, we invite everyone to join our Slack workspace, helping 
to foster an ongoing community around human-centered physio-
logical computing. 

2 Meet-Up Structure & Activities 
The meet-up comprises three parts: an introduction, two rounds 
of world-café discussions, and a synthesis of key challenges and 
solution approaches, as outlined in Table 1. 

3 Organizers 
Kathrin Schnizer. (https://www.medien.ifi.lmu.de/team/kathrin. 

schnizer/) is a PhD researcher in Human-Computer Interaction 
at LMU Munich. Her research investigates EEG markers of task-
oriented cognitive processes in data visualization (e.g., [18]), with 
the goal of establishing ERPs and FRPs as reliable measures for 
complex HCI interaction contexts. 

Teodora Mitrevska. (https://www.medien.ifi.lmu.de/team/teodora. 
mitrevska/) is a PhD researcher at the LMU Munich in Human-
Computer Interaction. Her research interests lie in wearable EEG 
devices and the usage of physiological signals as a form of implicit 
feedback in Human-AI interactions, for example [14]. 

Benjamin Tag. is a Senior Lecturer at UNSW Sydney, specializing 
in Human-Computer Interaction, Affective Computing, and Human-
AI Interaction. His research focuses on technologies for assessing 
mental and physical states in virtual and real-world environments, 
with an emphasis on emotion regulation, cognitive psychology, and 
context-aware computing. His work frequently incorporates the 
use of physiological sensors, e.g., [1, 21, 23]. 

Abdallah El Ali. (https://abdoelali.com) is a research scientist at 
Centrum Wiskunde & Informatica, and part-time Assistant Profes-
sor at Utrecht University. He leads the research areas on Affective 
Interactive Systems and Trustworthy Human-AI Interaction, where 
he combines advances in sensing and actuation, eXtended Reality, 
and Artificial Intelligence to augment human cognitive, affective, 
and social interactions, e.g., [11, 22, 25]. 

Sven Mayer. (https://sven-mayer.com) is a full professor at TU 
Dortmund and the RC Trust. His research sits at the intersection 

Table 1: The schedule of the Meet-Up. 

Duration Activity 

15 min Introduction and Context Setting The meet-up 
will open with a short introduction of the organiz-
ers and an overview of the topics. Attendees will 
then be invited to join the table of their preferred 
first topic. To ensure focused discussions in man-
ageable group sizes, participants may be asked to 
split further by sensor type depending on the num-
ber of attendees. 

2 × 30 min World Café Discussions Participants will rotate 
between small groups addressing four core themes: 
(1) developing reliable methods for collecting phys-
iological data in HCI, (2) defining best practices 
for preprocessing and pipeline management, (3) 
ensuring reproducibility and transparency, and (4) 
building infrastructures for open and collaborative 
research. Table facilitators will guide the conver-
sations and document key points. Insights will be 
collected digitally via QR codes linked to Google 
Forms, and shared in our Slack workspace, enabling 
participants to stay connected and continue the ex-
change as a community. 

15 min Next Steps Table facilitators will summarize the 
key challenges, best practices, and ideas for moving 
forward from their discussions. Participants will 
then be invited to join follow-up initiatives, such 
as the Slack workspace, collaborative workshops, 
or community-driven publications, to sustain the 
dialogue and build alignment beyond the meet-up. 

between HCI and Artificial Intelligence, where he focuses on the 
next generation of computing systems. He uses artificial intelligence 
to design, build, and evaluate future human-centered interfaces, 
e.g., [3, 5, 7]. 

4 Description of the Community 
This meet-up brings together the HCI community around shared 
challenges in working with physiological data. Integrating phys-
iological sensing into interactive systems spans a wide range of 
expertise and sensors, including signal processing, experimental 
design, data analysis, and machine learning. To strengthen this 
field, we invite HCI researchers and practitioners from diverse 
backgrounds to connect around the shared vision of promoting 
reproducibility, transparency, and robust practices in physiolog-
ical computing. The meet-up will serve as a space to exchange 
experiences, reflect on technical challenges, and discuss how the 
community can align on practices that strengthen physiological 
sensing in HCI. Our goal is to foster an inclusive network of re-
searchers and practitioners dedicated to advancing physiological 
sensing in HCI through robust and reproducible methods. 
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